Автор работы: Пользователь скрыл имя, 21 Марта 2013 в 14:01, курсовая работа
Матрицы возникающих систем могут иметь различные структуры и свойства. Уже сейчас имеется потребность в решении систем линейных алгебраических уравнений с матрицами полного заполнения порядка нескольких тысяч. При решении ряда прикладных задач методом конечных элементов в ряде случаев появляются системы, обладающие симметричными положительно определёнными ленточными матрицами порядка несколько десятков тысяч с половиной ширины ленты до тысячи. И, наконец, при использовании в ряде задач метода конечных разностей необходимо решить системы разностных уравнений с разрежёнными матрицами порядка миллион. Одним из самых распространенных методов решения систем линейных алгебраических уравнений является метод Гаусса.
ВВЕДЕНИЕ
1. ПОСТАНОВКА ЗАДАЧИ
2. МАТЕМАТИЧЕСКИЕ И АЛГОРИТМИЧЕСКИЕ ОСНОВЫ РЕШЕНИЯ ЗАДАЧИ
2.1 ОПИСАНИЕ МЕТОДА
2.2 АЛГОРИТМ
3. ФУНКЦИОНАЛЬНЫЕ МОДЕЛИ И БЛОК-СХЕМЫ РЕШЕНИЯ ЗАДАЧИ
4. ПРОГРАММНАЯ РЕАЛИЗАЦИЯ РЕШЕНИЯ ЗАДАЧИ
5. ПРИМЕР ВЫПОЛНЕНИЯ ПРОГРАММЫ
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ
Требуется решить систему линейных алгебраических уравнений с вещественными коэффициентами вида:
с помощью метода исключения Гаусса.
Пример 1. Покажем, как методом Гаусса можно решить следующую систему:
Обнулим коэффициенты при x во второй и третьей строчках. Для этого домножим их на и 1 соответственно и сложим с первой строкой:
Теперь обнулим коэффициент при y в третьей строке, домножив вторую строку на - 6 и сложив с третьей:
В результате мы привели исходную систему к треугольному виду, тем самым закончив первый этап алгоритма.
На втором этапе разрешим полученные уравнения в обратном порядке.
Имеем:
z = - 1 из третьего;
y = 3 из второго, подставив полученное z
x = 2 из первого, подставив полученные z и y.
Таким образом исходная система решена.
Пример 2. Покажем, как методом Гаусса можно решить следующую систему:
Составим расширенную матрицу системы.
Таким образом, исходная система может быть представлена в виде:
, откуда получаем: x =1, y = 2, z = 3.