Автор работы: Пользователь скрыл имя, 21 Марта 2013 в 14:01, курсовая работа
Матрицы возникающих систем могут иметь различные структуры и свойства. Уже сейчас имеется потребность в решении систем линейных алгебраических уравнений с матрицами полного заполнения порядка нескольких тысяч. При решении ряда прикладных задач методом конечных элементов в ряде случаев появляются системы, обладающие симметричными положительно определёнными ленточными матрицами порядка несколько десятков тысяч с половиной ширины ленты до тысячи. И, наконец, при использовании в ряде задач метода конечных разностей необходимо решить системы разностных уравнений с разрежёнными матрицами порядка миллион. Одним из самых распространенных методов решения систем линейных алгебраических уравнений является метод Гаусса.
ВВЕДЕНИЕ
1. ПОСТАНОВКА ЗАДАЧИ
2. МАТЕМАТИЧЕСКИЕ И АЛГОРИТМИЧЕСКИЕ ОСНОВЫ РЕШЕНИЯ ЗАДАЧИ
2.1 ОПИСАНИЕ МЕТОДА
2.2 АЛГОРИТМ
3. ФУНКЦИОНАЛЬНЫЕ МОДЕЛИ И БЛОК-СХЕМЫ РЕШЕНИЯ ЗАДАЧИ
4. ПРОГРАММНАЯ РЕАЛИЗАЦИЯ РЕШЕНИЯ ЗАДАЧИ
5. ПРИМЕР ВЫПОЛНЕНИЯ ПРОГРАММЫ
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ
Численное решение систем вида:
(3)
или Ax=b методом Гаусса заключается в последовательном исключении неизвестных. Система (3) поэтапно приводится к треугольному виду. Сначала исключается x1 из 2-го, 3-го,..., n-го уравнений, для этого необходимо сложить уравнения 2,3,...,n с первым уравнением, умноженным на - a21/a11, - a31/a11,..., - an1/a11 соответственно.
(4)
Потом x2 из 3-го,..., n-го умножением второго уравнения на - a¹32/a¹22, - a¹42/a¹22,..., - a¹n2/a¹22 и сложением с 3,4,. n уравнениями.
И дальше по аналогии система приводится к треугольному виду:
.
Процесс приведения системы к треугольному виду называется прямым ходом. Общие формулы для прямого хода:
,
,
где k =1,...,n - 1; i,j = k+1,...,n.
Для нахождения решения теперь необходимо вычислить неизвестные, начиная с n-го уравнения. Процесс вычисления значений неизвестных называется обратным ходом.
На каждом этапе xk находится по формуле
,
где k = n, n-1,...,