Автор работы: Пользователь скрыл имя, 21 Октября 2015 в 19:54, курсовая работа
Цель работы: раскрытие особенностей методики изучения уравнений в коррекционно-развивающем обучении.
В соответствии с проблемой, темой, объектом и предметом исследования поставлены следующие задачи:
·определить цель изучения уравнений в курсе математике в коррекционно-развивающих классах,
·изучить методику обучения решению уравнений на основании свойств равенств,
·определить виды уравнений, решаемых в начальном классе, их связь с изученным материалом,
·изучить образцы записи решения уравнения и проверки решения.
Введение
Глава 1. Методика изучения уравнений в курсе математике
1.1 Цель изучения уравнений в курсе математики в коррекционно-развивающих классах
1.2 Методика обучения решению уравнений на основании свойств равенств
Глава 2. Роль наглядных средств
2.1 Виды уравнений, решаемых в начальном классе. Их связь с изученным материалом
2.2 Образцы записи решения уравнения и проверки решения
Заключение
Список литературы
Решение уравнений на основе зависимости между компонентами действий.
После того как учащиеся научатся решать простейшие уравнения вида: х + 10 = 30 - 7, х+ (45 - 17) =40 и т.п. им предлагаются более сложные уравнения, для нахождения неизвестного компонента, в которых необходимы определенные преобразования. Для решения таких уравнений необходимы знания порядка действий в выражении, а также умения выполнять простейшие преобразования выражений.
Первыми рассматриваются уравнения, в которых правая часть задается не числом, а числовым выражением, например: х+25=5014 или х+25=12 3. При решении подобных уравнений учащиеся вычисляют значение выражения в правой части, после чего уравнение сводится к простейшему.
На протяжении длительного периода учащиеся упражняются в чтении, записи, решении и проверке таких уравнений, причем в левую и правую части их включаются простейшие выражения всех видов в различных сочетаниях. Наиболее сложными являются уравнения, в которых один из компонентов - выражение, содержащее неизвестное число х, например: (х+8) - 13=15, 70 + (40 - х) =96 и т.п., так как при решении уравнений данной структуры приходится дважды применять правила нахождения неизвестных компонентов. Например, рассматривают на уроке уравнение (12-х) +10=18. Очень важно правильно прочитать его, выяснить последнее действие, назвать компоненты, выделить каждое слагаемое, затем дети говорят о том, что неизвестное входит в первое слагаемое. После нахождения неизвестного слагаемого, после преобразования дети получают простейшее уравнение, в котором неизвестное вычитаемое. После нахождения вычитаемого х=4 необходимо сделать проверку решения уравнения.
Обучение решению уравнений этого вида требует длительных упражнений в анализе выражений и хорошего знания правил нахождения неизвестных компонентов.
Овладение навыками решения уравнений данного вида способствует преемственному обучению.
Решение уравнений на основе знаний конкретного смысла умножения.
При решении уравнений в начальной школе используется способ решения уравнения на основе знаний конкретного смысла умножения. В ходе решения уравнения вида 17+17=17х можно преобразовывать левую часть. Проанализировав вид уравнения, можно найти рациональный способ его решения.
Необходимо заменить сумму одинаковых слагаемых действием умножения. Затем сравнивая левую и правую часть, делается вывод, что этот вид уравнения можно решить на основе конкретного смысла умножения
Этот способ формирует у учащегося умение "оценивать", "проанализировать" записанное уравнение, что создает благоприятные условия для решения уравнений в дальнейшем.
Решение уравнений способом методического приема с весами.
Таким способом решаются сложные уравнения вида 2х+8=20 или 2 (х+8) =20. Весы находятся в равновесии. Ставится вопрос: как "избавиться" от числа? В таком случае дети сами догадаются, что если из каждой части весов убрать по 8, то равновесие сохраняется. Если же это число убрать только с одной чаши, то весы будут не в равновесии. Значит, это число нужно убрать с обеих чаш. При решении уравнений таким способом нужно обратить особое внимание на то, что сложение и деление - это взаимообратные арифметические действия.
Ученик использует в своих суждениях план, который определяет "шаги", ведущие к достижению поставленной цели. Этот способ позволяет учащимся учиться рассуждать, переносить общие суждения на частные, ускорить осознание изучаемого материала.
Учащиеся, освоившие решение уравнений в начальных классах не испытывают трудностей в обучении математике в V классе.
Обучение решению уравнений по-разному реализуются в программах по математике.
М.И. Моро, Ю.М. Колягин, М.А. Баитова.
К элементам алгебраической пропедевтики относится ознакомление детей с таким важным математическим понятием как понятие переменной. В теме "Числа от 1 до 10" после введения названий компонентов и результатов сложения и вычитания учащимся предлагаются упражнения, в которых значения слагаемых заданы в табличной форме и требуется найти суммы и заполнить соответствующие клетки таблицы. В дальнейшем вводится буквенное обозначение переменной. Дети учатся находить значения буквенных выражений при заданных числовых значениях входящих в них букв. Постепенно, начиная с решения подбором так называемых "примеров с окошком" вида o + 3 = 7, o - 3 = 7 или 10 - o = 7, учащиеся знакомятся с простейшими уравнениями (х 8 = 56, х + 9 = 19, х: 4 = 7 и т.п.), у них формируется понятие о том, что значит решить уравнение. В теме "Числа от 1 до 100" программой предусмотрено решение уравнений на основе знания взаимосвязей между компонентами и результатами действий. На более позднем этапе структура решаемых уравнений усложняется (х 8 = 246 - 86 и т.п.). Это способствует формированию у детей понятий равенство, левая и правая части равенства.класс. Введение буквенной символики для обозначения компонентов действий сложения и вычитания.класс. Решение уравнений вида 58 - х = 27, х - 36 = 23, х + 38 = 70 на основе знания взаимосвязей между компонентами и результатами действий.класс. Решение уравнений вида х 6 = 72, х: 8 = 12, 64: х = 16 на основе знания взаимосвязей между результатами и компонентами действий.класс. Решение уравнений вида х + 312 = 654 + 79, 360: х = 360: 7 на основе взаимосвязей между компонентами и результатами действий.
Обучение математике по программе автора Л.Г. Петерсон.
Развитие алгебраической линии неразрывно связано с числовой, во многом дополняя ее и обеспечивая повышение уровня обобщенности усваиваемых детьми знаний. Вместе с тем она обладает и известной самостоятельностью в качестве подготовительного этапа, необходимого для постепенного перехода к изучению программного материала. С самых первых уроков вводится буквенная символика, формируются определенные виды записи, причем эти записи аналогичны и для множеств, и для величин. Например, при решении уравнений из того, что А + Х = С (для множеств, следует, что Х = С - А, а из того, что а + х = с для величин, следует, что х = с - а). И в том и в другом случае решение обосновывается тем, что мы ищем неизвестную часть, поэтому из целого вычитаем другую часть. Как правило, запись общих свойств операций над множествами и величинами обгоняет соответствующие навыки при выполнении аналогичных операций над числами. Это позволяет создать для каждой из таких операций общую рамку, в которую потом, по мере введения новых классов чисел, укладываются операции над этими числами и свойства этих операций. Тем самым дается теоретически обобщенный способ ориентации в учениях о конечных множествах, величинах и числах, позволяющий потом решать обширные классы конкретных задач.класс. Уравнения вида а + х = с, а - х = с, х - а = с, решаемые на основе соотношений между частью и целым.класс. Уравнения вида а х = с, а: х = с, х: а = с, решаемые на основе их графической интерпретации. Решение задач на нахождение сторон прямоугольника, его периметра и площади, на нахождение объема куба и на основе знания формул.класс. Уравнения вида а + х = с, а - х = с, х - а = с, а х = с, а: х = с, х: а = с, с комментированием по компонентам действий. Решение задач с использованием формул пути, стоимости, площади и периметра прямоугольника, объема прямоугольного параллелепипеда, деления с остатком.класс. Решение усложненных уравнений вида а + х = с, а - х = с, х - а = с, а х = с, а: х = с, х: а = с и задач с их применением.
Анализ работы показывает, что в каждой программе имеет место работа над уравнениями. Однако сложность уравнений и возможность их применения для решения других математических задач варьируется.
Глава 2. Роль наглядных средств
2.1 Виды уравнений, решаемых в начальном классе. Их связь с изученным материалом
Наглядные средства обучения являются необходимым компонентом учебно-методических комплексов, в которые чаще всего входит учебник, тетрадь с печатной основой и методические указания для учителя.
Каждое средство наглядности отличается и той специфической функцией, которую оно может выполнять в учебном процессе, обеспечивающем его высокую эффективность. Важным элементом учебного оборудования должны стать комплекты средств вариативной наглядности. Они позволяют во время урока быстро создавать, изменять, разные ситуации с использованием наглядных пособий. Для этого используются наборы иллюстративных материалов или меловых рисунков, чертежей и записей. К числу таких средств относятся магнитная доска и фланелеграф, дидактические возможности которых во многом одинаковы.
В связи с различными дидактическими функциями и возможностями средств наглядности требуется их комплексное применение на уроке. Только в этом случае будет достигнута максимальная эффективность в решении каждой познавательной задачи урока. Комплексное применение различных средств наглядности объясняется тем, что оно обеспечивает совместную работу на уроках различных анализаторов.
Вместе с тем многообразие средств наглядности оправдано лишь в тех случаях, когда требуется раскрыть различные стороны изучаемого явления или предмета, а каждое из этих сторон более убедительно и полно может быть отражена лишь с помощью определенного вида наглядности. Нельзя не согласиться с Ю.К. Бабанским в том, что "чрезмерное увлечение наглядностью ведет к затормаживанию развития абстрактного мышления, без которого невозможно эффективное познание окружающей действительности. Обильное применение наглядности часто рассеивает внимание учащихся, отвлекает от познания главных идей темы, особенно когда речь идет об учащихся не с наглядно-образной, а со словесно-логической памятью
Описание методики работы над построением и решением уравнений необходимо начинать с рассмотрения различных определений уравнения.
В школьной энциклопедии уравнение определено как "два выражения, соединенные знаком равенства; в эти выражения входят одна или несколько переменных, называемых неизвестным. Решить уравнение - значит найти все те значения неизвестных (корни или решения уравнения), при которых оно обращается в верное равенство или установить, что таких значений нет. Там же дано определение уравнения как "аналитической записи задачи о разыскивании значений аргументов, при которых значения двух функций равны.
Понятно, что под аналитической записью и понимается запись равенства, левая или правая части которого содержат неизвестную (неизвестные) букву (или число). Именно буквенное выражение определяет функцию от входящих в него букв, заданную на допустимых числовых значениях.
Введение записи задачи (о нахождении неизвестной величины) с помощью уравнения начинается с конкретной задачи. Способы составления и решения уравнений опираются на отношение целого и его частей, а не на 6 правил нахождения неизвестных при сложении, вычитании, умножении, делении.
Для того чтобы найти способ решения уравнения, достаточно определить сначала по схеме, а позже и сразу по формуле, чем является неизвестная величина: частью или целым. Если известная величина является целым, то для ее нахождения нужно сложить, а если она часть, то из целого нужно вычесть известные части. Таким образом, ребенку не нужно запоминать правила нахождения неизвестного слагаемого, уменьшаемого и вычитаемого.
Успешность ребенка, его навык при решении уравнений будут зависеть от того, может ли ребенок переходить от описания отношения между величинами с помощью схемы к описанию с помощью формулы и наоборот. Именно этот переход от уравнения как одного из вида формул к схеме и определения с помощью схемы характера (часть или целое) неизвестной величины являются теми основными умениями, которые дают возможность решать любые уравнения, содержащие действия сложения и вычитания.
Другими словами, дети должны понять, что для правильного выбора способа решения уравнения, а значит, и задачи нужно уметь видеть отношение целого и частей в чем и поможет схема. Схема здесь выступает в качестве средства решения уравнения, а уравнение, в свою очередь, как средство решения задачи. Поэтому большинство заданий ориентировано на составление уравнений по заданной схеме и на решение текстовых задач путем составления схемы и с ее помощью составления уравнения, позволяющего найти решение задачи.
В начальной школе в процессе работы над уравнениями закрепляются правила о взаимосвязи части и целого, сторон прямоугольника с его площадью, формируются вычислительные навыки и понимание связи между компонентами действий, закрепляется порядок действий и формируются умения решать текстовые задачи, идет работа над развитием правильной математической речи. На уроках закрепления уравнения позволяют разнообразить виды заданий.
Изучение уравнений начинается с подготовительного этапа уже в 1 - м классе, когда дети, действуя с предметами, решают такие "задачи" ? + =
Затем учащиеся переходят к действиям над числами и выполняют задания, связанные с нахождением неизвестного числа в окошке, например:
? + 2 = 7 5 + ? = 7
- ? = 2 ? - 5 = 2
Дети находят числа либо подбором, либо на основе знаний состава числа. На данном этапе учителю необходимо включать в устные упражнения следующие задания:
Сколько надо вычесть их 3, чтобы получилось 2?
Сколько надо прибавить к 2, чтобы получилось 4?
На втором этапе учащиеся знакомятся с понятиями "уравнение" и "корень уравнения" (термин "корень" вводится в речевую практику, но внимание на нем не акцентируется).
В течение восьми уроков дети учатся решать уравнения с неизвестным слагаемым, уменьшаемым, вычитаемым. Названия компонентов арифметических действий были введены в речевую практику учащихся и использовались для чтения равенств и выражений, пока правило нахождения неизвестного компонента в уравнениях не заучиваются. Уравнения решаются на основе взаимосвязи между частью и целым. При изучении данной темы дети должны научиться находить в уравнениях компоненты, соответствующие целому (сумма, уменьшаемое), и компоненты, соответствующие его частям (слагаемое, вычитаемое, разность). При решении уравнений детям нужно будет вспомнить лишь два известных правила:
Целое равно сумме частей.
Чтобы найти часть, надо из целого вычесть другую часть.
Изучение уравнений в начальных классах традиционной школы происходит в несколько этапов. Программой традиционной школы предусмотрено знакомство детей с уравнениями первой степени с одной неизвестной. Большое значение в плане подготовки к введению уравнений имеют упражнения на подбор пропущенного числа в равенствах, деформированных примерах, вида 4+€=5, 4-€=2, €-7=3, и т.п. в процессе выполнения таких упражнений дети привыкают к мысли, что неизвестным может быть не только сумма или разность, но и одно из слагаемых (уменьшаемое или вычитаемое). До 2 класса неизвестное число обозначается, как правило, так: *. Теперь же для обозначения неизвестного числа используют буквы латинского алфавита. Равенство вида 4 + х = 5 называют уравнением. Равенство, где есть буква, называют уравнением.
На первом этапе уравнения решают на основе состава числа. Учитель знакомит с понятием неизвестного, понятием уравнение, показывает разные формы чтения, учит записывать уравнения по диктовку, разбирает понятия "решить уравнение, "что называется корнем, "что есть решение уравнения, учит проверять решенные уравнения.
На втором этапе решение уравнений происходит с использованием зависимости между компонентами. В этом случае при нахождении неизвестного числа можно пользоваться приемом замены данного уравнения равнозначным ему уравнением. Опорой перехода может быть граф. Приведу примеры уравнений и замены их равнозначными уравнениями с опорой на графы.