Шпаргалка по математике

Автор работы: Пользователь скрыл имя, 03 Декабря 2013 в 00:38, шпаргалка

Описание работы

#1{ пространство}Множ всех упорядоченных наборов n действ чисел с определенными на этом мн-ве функциями p(x,y) называется n-мерным арифметическим пространством и обозн Rn. {Открытые и замкнутые множ в прос-ве R ''}Множ xÎR'' назыв открытым если весь Х лежит в R то для любой точки "xÎX $ e >0 такая что U(x,e) принадл Х любое открытое множ содерж данную точку называется его окрестностью.

Файлы: 1 файл

matan.doc

— 342.00 Кб (Скачать файл)

#1{ пространство}Множ всех упорядоченных наборов n действ чисел с определенными на этом мн-ве функциями p(x,y) называется  n-мерным арифметическим пространством и обозн Rn.  {Открытые и замкнутые множ в прос-ве R ''}Множ xÎR'' назыв открытым если весь Х лежит в R то для любой точки "xÎX  $ e >0  такая что U(x,e) принадл Х любое открытое множ содерж данную точку называется его окрестностью. Точка х принадл пространству R'' назыв точкой прикосновения Х содержащейся в R'' если любая окрестность этой точки содержит точки множ-ва  Х  Множ-во содерж все свои точки прикосновения называется замкнутым  {Метрическое пр-во.} Метрическим  пространством называется пара (x,r) состоящая из мн-ва Х и действит не отриц функции r опред на множ Х и удовл след св-вам   1 r(x,y)=0 Û x=y1; 2) p(x,y)= p(y,x) " x,yÎX; 3) p(x,y)<= p(x,z)+p(z,y)  " x,y,z ÎX     в этом случае функция r метрикой число р(х,у)- расст м/у точками х и у

#2Если каждому значению перем величины х принадл мн-ву Е соотв одно и только одно значение величины у то у называется ф-ей от оси х или зависимой переменной определенной на множ Е, х называется аргументом или независ переменной. Если кажд знач х принадл некоторому мн-ву Е соотв одно или несколько знач переменноой величины у то то у называется многозначной функцией. {}Ф-ия у от х заданная цепью равенств у=f(u)  u=j(x)  и т.п. назыв сложной ф-ией или композицией ф-ий f  и u {}Ф-ия заданная ур-нием не разрешенным относит завис перееменной назыв неявной пример: х*х*х +у*у*у=1   у – неявная ф-ия от х {}пусть на множ Т заданы 2 ф-ии х=f(t)   у=y(t) f:T®X     y:T®Y причем для функции ф существует обратная t=l(x)   l:X ®T тогда на множ Х опред ф-ия f:X®Y следующим равенством f(x)=y(l(x)) ф-ия f назыв параметрич заданной ф-иями f(t) y(t) {}обр ф-ия  пусть f:Х®Y взаимно однозначное отображение множ Х на множ Y тогда опред отображение g:Y®X  "yÎY   g(y)=x  где хÎХ  такой что f(x)=y  такое отображ называется обратным к f  и обознач f( в степ -1)

#3Пусть Х какое либо мн-во всякое отобр f: N®X называется послед эл-тов Х элемент f(n) n-ый член последовательности и обозн хn cама послед  f:N®X обозн {Xn} или Хn   n=1,2,3…   число а назыв пределом послед {Xn} и обозн А=lim(n®¥)xn если "e>0 $ne =n(e)ÎN  тако что при n>ne  выполн нер-во /Хn-А/<e   нер-во эквивал след.: А-e<xn<A+e   обознач на граф чертеже эти точки тогда данное нер-во означ что все члены послед начиная с нек номера попадают в интервал (А-e;А+e). Если {Хn} имеет предел то он единственный {Док-во} предп обратное lim(n®¥)xn=a   lim(n®¥)xn=b   a<b   a<r<b  Þ для e1=r-a>0  $n1 при n>n1  /xn-a/<e1=r-a   Þ   a-r <xn-a<r-a   Þ   xn<r  при   n>n1   для e2=b-r>0  $ n2  такое что при n>n2  /xn-b/<e2=b-r  Þ  r-b<xn-b<b-c    =>  xn>r  при n>n2   пусть no=max(n1,n2)=> при n>no  xn>r   xn<r что невозм. => a=b  Теор док.{Т} Сходящаяся последовательность ограничена. {Док} Пусть последовательность аN сходится к числу а. Возьмем какое-либо эпсилон, вне эпсилон-окрестности точки а лежит конечное число членов последо вательности, значит всегда можно раздвинуть окрестность так, чтобы все члены последовательности в нее попали, а это и означает что последователь ность ограничена.

#4послед {xn} назыв б м п если lim(n®¥)xn=0 послед {xn} назыв б б п если она имеет своим пределом бесконечнось. Если {xn} ббп то 1/{xn} бмп Док-во т.к {xn} ббп => "e>0 $ne=n(e) такое что при n>ne вып неравенство /xn/>1/e =>  1//xn/<e  при n>ne = lim(n®¥) 1/xn=0 {T}произвед беск малой на огранич есть бмп {док-во} пусть {xn}- бмп а {уn}- огранич => $M>0  такое что /уn/<M при " n  пусть e>0 тогда тк {xn}- бмп =>$ne=n(e)  при n>ne /Xn/<e/M  => при n>ne  /xnyn/=/xn/yn<(e/M)*M=e  => lim(n®¥)(xnyn)=0 чтд {Т} Если $n0: "n>n0 aN£bN£cN и $ Lim aN=a, $ Lim cN=c, причем a=c, то $ Lim bN=b => a=b=c. {Док} Возьмем произвольно Е>0, тогда $ n’: "n>n’ => cN<(a+E) & $ n”: "n>n” => (a-E)<aN. При n>max{n0,n’,n”} (a-E)<aN£bN£cN<(a+E), т.е. " n>max{n0,n’,n”}=>bNÎ(a-E,a+E) {Т переход от к пределу в неравенствах} Если Lim xN=x, Lim yN=y, $n0: "n>n0 хN£yN, тогда x£y {Док-во} (от противного):  Пусть х>у => по определению предела $ n0’: "n>n0’ |хN-х|<E(берем Е<|х-у|/2): & $ n0”: "n>n0” |yN-y|<E. "n>max{n0’, n0”}: |хN-х|<|х-у|/2 & |уN-у|<|х-у|/2, т.е. получаем 2 интервала (у-Е,у+Е) & (х-Е,х+Е)], причем (у-Е,у+Е)Ç(х-Е,х+Е)=Æ. "n>max{n0’, n0”} хNÎ(х-Е,х+Е) & уNÎ(у-Е,у+Е) учитывая, что х>у получаем: "n>max{n0’, n0”} хN>yN - противоречие с условием.

#5 {О предела ф-ции} Пусть f(x) определенна в некоторой окрестности т. «а» за исключунием быть может самой этой точки а. Число А – называется пределом ф-ции при x®a если "E>0 $ d=d(E)>0 :   "x    0<|x-a|<d вып. |f(x)-A|<E   {O limx®af(x)=¥} Если "E{бол}>0 $ d=d(E)>0 | "x  0<|x-a|<d Þ |f(x)|<E Þ limx®af(x)=¥ {O limx®af(x)=+¥} Если "E>0 $ d=d(E)>0 : "x  0<|x-a|<d  вып f(x)>E {O limx®af(x)=-¥} Если "E>0 $ d=d(E)>0 : "x  0<|x-a|<d  вып f(x)<-E {O limx®¥f(x)=A} Если "e>0 $ D=D(e)>0 : "x  |x|>D  вып |f(x)-A|<e {O limx®¥f(x)=¥} Если "E{бол}>0 $ D=D(E)>0 : "x   |x|>D  вып |f(x)|>E {Односторонние пределы} Правым (левым) пределом ф-ции f(x) ghb x®a+0(-0) называется число А / "e>0 $d=d(e)>0 при "x a(-d)<x<a(+d) Þ |f(x)-A|<e  A=limx®a+0(-0)f(x){Теорема о единственности предела} Если ф-ция f(x) имеет limx®a, то он единственный. {Д} Предположим обратное пусть limx®af(x)=A  limx®af(x)=B выберем окрестности точек А и В так, чтобы они не пересекались U(A;e);  U(B;e), тогда для данного e 1) $d=d(e)>0 | при "x 0<|x-a|<d Þ |f(x)-A|<e Þ f(x)ÎU(A;e) 2) $d2=d2(e)>0 | при "x 0<|x-a|<d2 Þ |f(x)-B|<e Þ f(x)ÎU(B;e) Пусть d0=max(d1,d2), тогда при "х уд. 0<|x-a|<d0 вып. f(x)ÎU(A;E),  f(x)ÎU(B;E) Þ Эти две окрестности пересекаются, что противоречит выбору этих окрестностей т.о. А=В Ч.т.д.{Теорема об орграниченности на нек окрестности (.)а  f(x)}  Если при x®a f(x) имеет конеч lim=A , то она ограничена в некоторой окрестности точки а.{Док-во} Т.к. $limx®af(x)=A, то для e=1  $d>0 | при "x  0<|x-a|<d вып.  |f(x)-A|<1 Þ |f(x)|=|f(x)-A+A|£|f(x)-A|<|f(x)-A|+|A|<1+|A| при "х уд 0<|x-a|<d -это означает что f(x) ограничена (.)а {ББ и БМ ф-ции}{О} Ф-ция f(x) называется БМ х®а если limx®af(x)=0 {o} ф-ция ББ если limx®af(x)=+(-)¥  {T} Если f(x) бб при х®а, то 1/f(x) бм при х®а. Если f(x) бм при х®а и она отлична от 0 в некоторой окрестности (.) a, то 1/f(x) – бб при х®а  {Док} Возьмём E>0  Þ $d=d(E) >0 | при "x уд. 0<|x-a|<d Þ |f(x)|>1/E Þ 1/f(x)<E при "x уд 0<|x-a|<d Þ 1/f(x) бм при x®a  Пусть f(x) – бм при x®a и $ d1>0 | "x, уд. 0<|x-a|<d1 Þf(x)¹0 возьмём E{бол}>0 тогда $ d2>0 | при 0<|x-a|<d2 |f(x)|<1/E{бол}, пусть d=min(d,d2)Þ при "x , 0<|x-a|<d  вып-ся f(x)¹0, |f(x)|<1/E Þ 1/f(x)>E Þ 1/f(x) –бб при х®а {T} Сумма двух б.м при x®a есть бм при x®a {Д} Пусть limx®af1(x)=0 limx®af2(x)=0 "e>0, тогда $d1=d1(e)>0 | при "х 0<|x-a|<d1 Þ |f1(x)|<e/2 $ d2=d2(e)>0 | при "x, 0<|x-a|<d2Þ |f2(x)|<e/2 Пусть d=min(d1,d2) Þ "x 0<|x-a|<d Þ |f1(x)+f2(x)|<=|f1(x)|+|f2(x)|=e/2+e/2=e Þ limx®a(f1(x)+f2(x))=0 {T}Произведение бм при x®a на ф-цию ограниченную в некоторой окрестности есть бм при x®a {Док} Пусть limx®ag(x)=0, а ф-ция g(x) ограничена в U(m,d1) т.е. $ m>0 | "х ÎU(a,d1)Þ |g(x)|<m "e>0 Þ $ d2>0 | при "x, 0<|x-a|<d2 Þ |g(x)|<e/m ; Пусть d=min(d1,d2) Þ "x, 0<|x-a|<d Þ |f(x)g(x)|=|f(x)|×|g(x)|<em/m=e Þ limx®af(x)g(x)=0

#6 {Т о связи ф-ии и ее пределов.}Для того чтобы А было lim ф-ии f(x)  при х®а  А=lim(a®¥)f(x)  Û f(x)=A+j(x) ;Где   j(x) – б м ф-ия  при х®а  {док-во}  Пусть А=lim(х®а) f(x)   предположим ; j(x)=f(x)-A  и докажем что j(x)-б м ф при х®а.   Возьмем " e>0 $ d завис от e такое что d(e)>0 такое что   "х, 0</x-a/<d  =>  /f(x)-A/<e  =>  /j(x)/=/f(x)-A/<e таким образом j(x) – бмф при х®а    пусть f(x)= j(x)+A  где j(x) – бмф при х®а тогда  при " e>0 $ d>0  такая что "х  удв  0</x-a/<d  выполняется   /j(x)/< e  => /f(x)-A/=/j(x)/ <e  => lim®а)f(x)=A {Арифмитические операции над пределами ф-ций Т }пусть сущ предел f1(x) при х®а =А   и сущ lim®а)f2(x)=B 1)сущ lim(f1(x)+f2(x))=A+B 2) сущ lim(f1(x)*f2(x))=AB 3) сущ lim(f1(x)/f2(x))=A/B  при В¹0 ; 1-e св-во тк lim(х®а)f1(x)=A и lim(х®а)f2(x)=B  =>  f1(x)=A+j1(x)     f2(x)=B+j2(x)  где j1j2  бм ф-ии при х®а  тогда f1(x)+f2(x)=A+B+j1j2= A+B+j(x)==  где j(х) бмф т.к. сумма 2х бм ==lim(х®а)(f1(x)+f2(x))=A+B {предельный переход в неравенство}  пусть lim®а)f1(x)=b1  lim®а)f2(x)=b2  и b1<b2 тогда $  U(a,d)  такая что "хÎ U(a,d)  =>  f1(x)<f2(x) {док-во} возьмем число с леж между b1 и b2    b1<c<b2  => 1)e1=c-b1>0 $d1>0  так что "хÎU(a,d)   /f1(x)-b1/<e1 = c-b1 => b1-c <f1(x)-b1<c-b1  =>f1(x)<c ;2) Для e2=b2-c $d2>0  так что "хÎU(a,d)  =>/f2(x)-b2/<e=b2-c  => c-b2 <f2(x)-b2<b2-c ; c<f2(x)  пусть d=min(d1d2) =>"хÎU(a,d) => f1(x)<c  c<f2(x)=>  f1(x)<f2(x) {Т}пусть lim®а)f1(x)=b1  lim®а)f2(x)=b2  и $ U(a,d)  так что "хÎU(a,d)  f1(x)<=f2(x)=> b1<=b2  {док} противоп утверждение те b1>=b2  в силу предыдущ теоремы сущ U(a,d)  так что "хÎU(a1,d1) => f1(x)>f2(x) do =min(d1d2) =>"хÎU(a1,do)  => f1(x)<f2(x) по усл f1(x)>f2(x)- по док-ву => противор =>b1<=b2  чтд  {Т} Пусть существует limx®aj(x) ; limx®af(x) причём limx®aj(x)=A limx®aY(x)=A и в некоторой окр-ти U(a,d) вып-ся j(x)£f(x)£Y(x) тогда $limx®af(x)=A  {Док-во} "E>0 Þ $d2>0 | "x  0<|x-a|<d2 Þ A-E<j(x)<A+E ; $d3>0 | "x,  0<|x-a|<d3 Þ A-E<Y(x)<A+E Пусть d=min(d1,d2,d3)Þ "x 0<|x-a|<d Þ A-E<j(x)£f(x)£j(x)<A+EÞ |f(x)-A|<E

    #7{Теорема о пределе сложной ф-ции} Пусть $limx®af(x)=A $limy®Ag(y)=B и в некоторой U(a,d1) определена сложная ф-ция g(f(x)) и f(x)¹А тогда $limx®ag(f(x))=limy®Ag(y) {Док-во} "E>0 т.к. $ limy®Ag(y)=B Þ $s>0 |"y , 0<|y-A|<s Þ|g(y)-B|<E  т.к. $ limx®af(x)=A Þдля Е1=d $ s<d1 | "x , 0<|x-a|<d Þ 0<|f(x)-A|<s Þ "x, 0<|x-a|<d Þ |g(x)-B|<E $limx®ag(f(x))=B=limy®Ag(y)

     #8{сравнение ф-ций} f(x) есть O-большое от ф-ци от ф-ции g(x) на мн-ве Е и пишут f(x) =O(g(x)) на  E , если $ C>0 | |f(x)|£C(g(x)) "x Î E f(x)=O(1) на E Þ f(x) ограничена на Е т.е. $ С>0 |  |f(x)|£C "xÎE Пусть ф-ция f(x) и g(x) –определены в некоторой окрестности (.) а за исключением быть может самой этой (.)  f(x) есть o-малое от g(x) при x®a и пишут f(x)=o(g(x)), x®a , если в некоторой выколотой окрестности а имеет место f(x)=E(x)g(x), где limx®fE(x)=0 x²=o(x), x®0 f(x)=og(x) , x®a E(x)=x  h(x)=o(g(x)), x®a; j(x)+h(x)=o(g(0))+o(g(x)=o(g(x)) x®a  f(x) есть  O-большое от g(x) при x®a, если $ U(a) | f(x)=O(g(x)) на U(a) пишут f(x)=O(g(x)), x®a Ф-ции f(x) и g(x) называется эквивалентами x®a, если эти ф-ции определены и отличны и отличны от 0 в некоторой окрестности (.) а за исключением быть может самой этой точки и существует предел $ limx®af(x)/g(x)=1 пишут f(x)~g(x) x®a {Т} Для того, чтобы ф-ция f(x) и g(x) были эквивалентны, необходимо и достаточно f(x)=g(x)+o(g(x)) x®a g(x)¹0 (x¹a) {Док-во}  Пусть f(x)~g(x) , x®a тогда по определению g(x) отлично от 0 в U(0) и $ limx®af(x)/g(x)=1 Þ $ E(x), E(x)®0 при x®a  | f(x)/g(x)=1+E(x)Þ f(x)=g(x)+E(x)g(x)=g(x)+o(g(x)), x®a. Обратно Пусть f(x)=g(X)+o(g(x)) x®a , g(x)+o(x+a) f(x)=g(x)+E(x)g(x), где limx®aE(x)=0 Þ f(x)/g(x)=1+E(x) Þ limx®af(x)/g(x)=1 Þ f~g(x) x®a {Сранение бесконечно малых ф-ций} Пусть f(x) и g(x) –б.м. ф-ции при x®a g(x)¹0 в некоторой U(a) {O} Если отношение f(x)/g(x) при x®a имеет конечный и отличный от 0 предел, то ф- ции называются б.м. одного порядка. Если f(x)/g(x)=0 то f(x) само является бесконечно б.м. более высокого порядка по сравнению с g(x) при x®a  {O} Ф-ция f(x) называется б.м. к-ого относительно б.м. g(x) при x®a, Если ф-ция f(x) и gk(x) б.м. одного порядка при x®a

   №9{Непрерывность ф-ции в точке} Ф-ия назыв непрерывной в точке а если (дельта)f(a)=f(a+h)-f(a) определена в окр точки  h=0   и для "e >0  $ d=d(e)>0  такое что "h  /h/<d     /f(a+h)-f(a)/< e Для того чтобы ф-ия была f(x) была непрерывна в т а необход и достаточно чтобы сущ f(a+0), $ f(a-0)  и f(a+0)=f(a)=f(a-0){Одностороняя непрерывность} Ф-ция наз. непрерывной справа (слева) если существует f(a+0)=limx®a+0f(x) (f(a-0)=limx®a-0f(x)) и f(a+0)=f(a) (f(a-0)=f(a)) {классифик точек разрыва}  если для ф-ии f(x) в т а $  f(a+0), f(a-0) конечные значения но ф-ия в точке а имеет разрыв. то говорят что она имеет разрыв 1-го рода если ф-ия в точке а имеет разрыв не 1-го рода то такой разрыв называется разрывом второго рода.{Теорема о сохранении знака непрерывной ф-ции} пусть ф-ия f(x) непрерывна в т а и f(a)¹0 тогда существует окрестность точки а :U(ag) и с>0 такое что f(x)>c "xÎU(a,g)   ((1)f(a)>0)  f(x)< -c  "xÎU(ag)  при f(a)<0  {Док-во} возьмем e =/f(a)//2>0  тогда $ d>0 такое что "xÎU(ag)  => /f(x)-f(a)/< e=/f(a)//2 f(x)<f(a)+/f(a)//2   f(x)=f(a)-/f(a)//2 ;1) f(a)>0 => /f(a)/=f(a)=>  "xÎU(ag)    f(a)/2<f(x) => c = f(a)/2; 2) f(a)<0 => /f(a)/=-f(a)=>  "xÎU(ag)    f(a)/2>f(x) => c = - f(a)/2 >0  =>  f(x)<-c  чтд   

#10{Св-ва непрерывных ф-ций на промежутках} {Т Больцано-Каши} Пусть ф-ция f(x) определена и непрерывеа на отр [a,b] и принимает на его концах значения разных знаков. Тогда существует (.) с принадлежащая интервалу (a,b) в которой f(c)=0 {T2} Пусть ф-ция f(x) определенна и непрерывна на промежутке X([c,d],[c,d),(c,d],(c,d)) и принимает в т. a,b Î X , a<b A=f(a)¹f(b)=B, тогда для любого числа С лежащего между А и В $ cÎ(a,b) / f(с)=С {Док} Рассмотрим [a;b] вспомогат ф-цию j(x)=f(x)-C Пусть для определённости A<B  Þ A<C<B; ф-ция j(x) непрерывна на [a,b] и принимает на его концах разные знаки j(a)=f(a)-C=A-C<0; j(b)=f(b)-C=B-C>0 Þ по теореме Больцана –Каши $ сÎ(a,b) | j(c)=0 Þ f(c)-C=0Þ f(c)=C {Т}Ф-ция f(x) непрерывная на отр [a,b] ограничена на этом отрезке.{Т} Ф-ция f(x)-непрерывна на отр[a,b] в некоторых точках этого отрезка минимального и мах значения $a.b Î[a,b] | f(a)=minf(x) xÎ[a,b]; f(b)=maxf(x) xÎ[a,b] f(a)<=f(x)<=f(b) "x Î[a,b]. {Равномерная непрерывность} Ф-ция y=f(x) определённая на мн-ве ХÎRn  называется равномерно непрерывной на Х если для "e>0 $d=d(e)>0 |   "x’,x’’ÎX,r(x’,x’’)<dÞ|f(x’)-f(x’’)|<e; Прим f(x) –равномерно непрерывна на всей числовой прямой т.к. для "e>0 $d=e | "x’,x’’ÎR, |x’-x’’|<d=e {Т Картера} ф-ция непрерывная на огран замкн. мн-ве равномерно непрерывна на нём.

#11 {Т о непрерывн сложн ф-ии } Пусть ф-ия f(x) непрерывна в т. а, a ф-я g(y) непрер в т b =f(a) тогда сущ ф-ия=g(f(x))  в некоторой окр точки а которая непрерывна в точке а {Док-во}Возьмем "e>0 тогда из непрерывности ф-ии  g(у) в т b следует что сущ число d>0 так что "у  /у-b/<d  так что ф-ия  g(y) определена и /g(y)-g(b)/<e  из непрерывности ф-ии g(x) в т а $ d>0  l(х) опред на (а-d;а+d)  и "хÎ(а-d;а+d) => /f(x)-f(a)/<d. На интервале (а-d;а+d) опред сложная ф-ия g(f(x)) причем "хÎ(а-d;а+d)  /g(f(x))-g(f(a))/<e => по опред непрерывности => g(f(x)) непрерывна вт а чтд.

#12 {Непрерывность обратной ф-ции} Пусть у=f(x) – непрерывна при "хÎ [a,b] "уÎ[A,B]  и пусть она строго возрастает, тогда ф-ция x=j(y) также непрерывна {Д} Пусть y0Î[A,B] Þ x0=j(y0), f(x0)=y0 x0Î(a,b) ; возьмём e>0 столь малое, что [x0-e,x0+e]Ì[a,b] Пусть y1=f(x0-e) y2=f(x0+e) Тогда в силу строго возрастания ф-ции f "yÎ(y1,y2)Þx=j(y)Î(x0-e,x0+e) тогда для у из [A,B] получаем [a,b] Þ мы получили на нём e>0 удовлетв этому условию мы не взяли существ окрестность в (.) 0 (у1,у2) | "уÎ(у1,у2) соответсвует j(y)Î(x0-e;x0+e) Если это утверждение справедливо для мал e то оно справедливо для +e Þ ф-ция j - непрерывна в т. н0 по определению. {} Пусть у0=В Þ х0=j(y0)=b Возьмём e<b-a Пусть y1=f(x0-e) тогда в силу строгого возрастания ф-ции f  "yÎ(y,y0] Þ x=j(y) при отображении j пойдёт в а (x0-e,x0) Þ ф-ция j непрерывна в (.) у0 по определению. аналогично рассматривается случай с убыванием.

#13 {Непрерывность элементарных ф-ций} 1)f(x)=C –непрерывна на всей числовой прямой. Df(x)=f(x+h)-f(x)=C-C=0; limh®0Df(x)=0; 2) f(x)=x; Df(x)=x+h-x=h Þlimh®0h=0; 3)f(x)=xn, nÎN –непрерывна на всей числовой прямой, непрерывна как произведение непрерывных ф-ций Þ по индукции xn=xn-1×x; 4)f(x)=a0xn+a1xn-1+…+an-непрерывная на всей числовой прямой как сумма конечного числа непрерывных ф-ций; 5)R(x)=P(x)/Q(x)=(a0xn+a1xn-1+…+an)/(b0xm+b1xm-1+..+bm)-непрерывна на всей числовой прямой за исключением тех х, при которых значение знам. обращ в 0 как частное двух непрерывных ф-ций.;6) f(x)=sinx Лемма "xÎR, |sinx|<=|x|  Рассмотрим еденичную окружность.Ð(OB,ox)=Ðx; Ð(OB’,ox)=Ðx 0<=x<=p/2 т.к. длина отрезка соед две точки не превосходит длины дуги окружности соединяющей теже точки Þ |BB’|<=BAB’ ; |BB’|=2Rsinx; BAB’{дуг}=2Rx Þ 2Rsinx<=2rx; sinx<=x ; Если -p/2<=x<0 то |sinx|=-sinx=sin(-x)<=-x=|x| ; 0<-x<=p/2 Если |x|>p/2 Þ |sinx|<=1<p/2<|x| {док} что sinx- непрерывна. |Df(x)|=|sin(x+h)-sinx|=|2sinh/2cos(x+h/2)|<=2|sinh/2| limh®0sinh/2=0 7.f(x)=cosx – непрерывна на всей числовой прямой |Df(x)|=|cos|x+h|-cosx|=(2sinh/2sin(x+h/2)<=2|h/2|  |h|®0; 8)f(x)=ax –непр на всей числ пр,a>=0 Df=(ax+h-ax)=ax(ah-1) limh®0ax(ah-1)=0; 9)f(x)=logax  a>0 a¹1 непрерывна на (0,+¥) 10)arcsinx, arccosx – на всей числ. пр.

#14 {Понятие числового ряда} пусть дана числовая последовательность {an}  составленный из членов этой последовательности символ. а1+а2+а3…аn назыв беск числовым рядом а1а2-члены этого ряда для обознач исп å сумма n  1-ых членов ряда назыв частичной суммой ряда если предел послед частичных сумм конечный то говорят что ряд сход в прот случае расход {Т необход условие сходимости} если ряд åаn сход то lim(n®¥)an=0  док-во если ряд åan сх то $ lim(n®¥)Sn=S=lim(n®¥)S(n-1) тогда lim(n®¥)an = lim(n®¥)(Sn-S(n-1)) = lim(n®¥)Sn-lim(n®¥)(Sn-1)=0 т док. {Т Критерий Коши } Для сх-ти ряда å(n=1,¥)an ó "e >0 $ ne  такое что при n>ne  и "рÎ Z  p>=0  вып неравенство /аn+an+1+an+2+an+p/<e; {} å(n=1..¥)1/n( в степ a) a >1 сход  a<1 расход; na<=n Пусть a<=1 Þ 1/na+1/(n+1)a+…+1/(2n-1)a>=1/n+1/(n+1)+…+1/(2n-1)>1/2n+1/2n+…+1/2n=n/2n=1/2 Þ для e=1/2 при " n $ p=n-1 | вып-ся нер-во |an+…+an+p|>e Þ ряд расх. Пусть a>1, s=2-1>0 расходится частичная сумма ряда  S2k=1+1/2a+(1/3a+1/4a)+(1/5a+1/6a+1/7a+1/8a)+…+(1/(2k-1+1)a+,,,+1/(2k)a); 1/(n+1)a+1/(n+2)a+…+1/(2n)a>1/na+1/na+1/na=n/na=1/na-1=1/ns<1+1/2a+1/2s/(1-1/2s) Þ {S2k} –ограничена сверху т.к. "n $k |n<2k Þ Sn<S2kÞ ряд сход.

Информация о работе Шпаргалка по математике