Шпаргалка по математике

Автор работы: Пользователь скрыл имя, 03 Декабря 2013 в 00:38, шпаргалка

Описание работы

#1{ пространство}Множ всех упорядоченных наборов n действ чисел с определенными на этом мн-ве функциями p(x,y) называется n-мерным арифметическим пространством и обозн Rn. {Открытые и замкнутые множ в прос-ве R ''}Множ xÎR'' назыв открытым если весь Х лежит в R то для любой точки "xÎX $ e >0 такая что U(x,e) принадл Х любое открытое множ содерж данную точку называется его окрестностью.

Файлы: 1 файл

matan.doc

— 342.00 Кб (Скачать файл)

#48 {T о среднем} Пусть 1) f  и g интегрируема на [a,b]; 2) m<=f(x)<=M, для "хÎ[a,b]; 3) На отр.[a,b] ф-ция g(x)  Сохраняет знак. т.е. она либо не положительна, либо не отрицательна тогда сущ $m | m£m£M и aòbf(x)g(x)dx=m×aòbg(x)dx {Док-во} Т.к. на отр[a,b] m£f(x)£M то умножив это нер-во на g(x) получим mg(x)£f(x)g(x)£Mg(x) при g(x)³0;  mg(x)³f(x)g(x)³Mg(x) при g(x)£0; Т.к. f и g интегрируемы на [a,b] то интегрируя нер-во получим maòbg(x)dx£aòbf(x)g(x)dx£Maòbg(x)dx при g(x)³0; maòbg(x)dx³aòbf(x)g(x)dx³Maòbg(x)dx при g(x)£0; Если aòbg(x)dx=0 то  из полученного нер-ва находим : aòbf(x)g(x)dx=0 Þ рав-во aòbf(x)g(x)dx=maòbg(x)dx выполнено при любом m; Пусть aòbg(x)dx¹0 Þ при g(x)³0 aòbg(x)dx>0, а при g(x)£0 aòbg(x)dx<0; Разделим нер-ва на aòbg(x)dx в обоих случаях получим : m£aòbf(x)g(x)dx/aòbg(x)dx£M; Пологая m=aòbf(x)g(x)dx/aòbg(x)dx Þ получаем утверждение теоремы aòbf(x)g(x)dx=maòbg(x)dx {Следствие} При дополнительном предположении что ф-ция y=f(x) непрывна на отр[a,b] существует xÎ[a,b] такое, что aòbf(x)g(x)dx=f(x)×aòbg(x)dx

#49 Пусть ф-ция y=f(x) интегрируема на отр[a,b]Þтогда она интегрируема на отр[a,x] при a£x£b по св-ву опред ò Þ F(x)= aòxf(t)dt, xÎ[a,b] – которая называется интегралом с переменным верхним пределом от ф-ции F(x) {T1} Если ф-ция y=f(x) интегрируема на [a,b], то F(х) непрерывна на [a,b]. {Док-во} пусть xÎ[a,b] x+DxÎ[a,b] Рассмотрим приращение: DF=F(x+Dx)-F(x)= aòx+Dxf(t)dt-aòxf(t)dt; Т.к. ф-ция y=f(x) интегрируема на [a,b] Þ$ C>0. |f(x)|£С  "xÎ[a,b]Þ|DF|=|xòx+Dxf(t)dt|£С×| xòx+Dxdt|=С|Dx| ÞlimDx®0DF=0 Значит А- непрерывна в т. х Ч.Т.Д. {T2} Пусть y=f(x) интегрируема на [a,b] и непрерывна в x0 Î[a,b] Þ F(x)= aòxf(t)dt дифференцируема в (.) х0Î[a,b]  и имеет место равенство F’(x0)=f(x0) {Док-во} Пусть x0+DxÎ[a,b] DF=F(x0+Dx)-F(x0)= aòx+Dxf(t)dt- aòx0f(t)dt= aòx0f(t)dt+ x0òx+Dxf(t)dt- aòx0f(t)dt= xòx0+Dxf(t)dt  |DF/Dt-f(x0)|=|1/Dx|, x0òx0+Dxf(t)dt-f(x0)/Dx=|1/Dx × x0òx0+Dx (F(t)-f(x0))dt|£1/|Dx|×| x0òx0+Dxf(t)-f(x0)dt Т.к. ф-ция f(x) непрерывна в х0 то для любого E>0 $ dt>0 |при|x-x0|<dEÞ|f(x)×f(x0)|<E Пусть |Dx|<EEÞ"t из промежутка от х0 до х0+Dх выполняется нер-во |t-x0|£|Dx|+dÞ |F(t)-f(x)|<E  ; |DF/Dx-F(f0)|£1/Dx | x0òx0+Dx(f(t)-f(x0))dt<1/|Dx|× xòx0+Dxdt|=E Þ $limDx®0DF/Dx=f(x0)ÞF’(x0)=f(x0) Ч.Т.Д.

№50 Ф-ла Ньтона-Лейбница aòbf(x)dx=Ф(b)-Ф(а)=Ф(х)|аb –(1) {T} (основная теорема интегрального исчисления) Пусть ф-ция y=f(x) непрерывна на [a,b] и Ф(х)-какая либо из её первообразных. Þ (1) {Док-во} F(x)= aòxf(t)dt тогда ф-ции F(x) и Ф(x) первообразные для f(x) на [a,b] $ F(x)=Ф(х)+С; aòxf(t)dt=Ф(х)+С Если x=a то aòаf(t)dt=0 Þ 0=Ф(а)+СÞ С=-Ф(а)Þ aòxf(t)dt=Ф(х)-Ф(а) Поллагая в равенстве x=b приходим к вормуле (1) Ч.Т.Д.

#51{замена переменной} 1)f(x) непр на[a,b]; 2)x=j(t) непрерывна вместе со своей производной на [a,b]; 3) j(a)=a ,j(b)=b ;4)"tÎ[a;b] j(t)Î[a,b]; Тогда aòbf(x)dx = aòbf(j(t))×j’(t)dt {Док-во} по условию теоремы на отр[a,b] определена сложная ф-ция f(j(t)); F(x)-первообр f(x) на [a,b] тогда определена F(j(t)), которая по теореме умножения сложной ф-ции является первообразной для f(j(t))×j’(t) на [a,b]  По условию теоремы подъинтегральных ф-ций в равенстве aòbj(x)dx = aòbj(j(t))×j’(t)dt непрерывны на рассматриваемых отрезках Þ оба интеграла существуют. По теор Ньютона-Лейбница : aòbf(x)dx =F(b)-F(a); aòbf(j(t))×j’(t)dt =F(j(b))-F(j(a))=F(b)-F(a)= aòbf(x)dx Ч.Т.Д. {Т по частям} Пусть u(x) и v(x) непрерывны со своими производными на [a,b] тогда aòbu’(x)×v(x)dx=u(x)v(x)|ba- aòbu(x)v’(x)dx {Док-во} Произведение  u(x)v(x) имеет на [a,b] непрерывную производную (u(x)v(x))’=u(x)v’(x)+u’(x)v(x) по этому по теореме Ньютона-Лейбница  u(x)v(x)|ab= aòb (u(x)×v’(x)+u’(x)×v(x))dx= aòbu(x)×v’(x)dx+ aòbu’(x)×v(x)dx откуда Þ aòbu’(x)×v(x)dx=u(x)v(x)|ba- aòbu(x)v’(x)dx

#52(Площадь плоской фигуры) Заключим фигуру Р в прямоугольник со сторонами параллельными осм Ох и Оу  прямоуг обозн R; Разабьём прам R на мн-во мелких прямоуг.; Обозначим А фигуру полученную объединением прямоуг , целиком лежащих в плоскости R, а через В фигуру полученную объедин прямоугольников лежащих в Р. A-òA B-òB ; Пусть d- наибольшая диагональ прямоугольников разбиения, если при d®0  òA и òB ® к одному и томуже пределу, то фигура Р-наз квадрируемой, а её площадь считается равной ò;  Пусть ф-ция f(x) –непрерывна на [a,b] и f(x)³0 "xÎ[a;b] и ограничена снизу осью Ох а по бокам x=a, x=b. Пусть t={xi}i=0i=it-произвольное разбиение отр [a,b]; git={(x,y), xÎ[xi-1,xi], 0£y£mi=inff(x)} Git={(x,y), xÎ[xi-1,xi], 0£y£Mi=supf(x)}; Sgti=1itmiDxi; SGti=1itMiDxi {T} Для того, чтобы ф-ция f(x) огр на [a,b] была интегрируема на этом отр. необходимо и достаточно : lim|t|®0(Sgt-SGt)=0 {Д} т.к. ф-ция f(x) –нерерывна на отр[a,b]  то она интегрируема на этом отр. Þ по критерию итегрируемости lim|t|®0SGt= lim|t|®0Sgt=S= aòbf(x)dx {сектор} Сектор ограничен кривой r=f(j), где f(j) – непрерывна на [a,b] и f(j)³0 "jÎ[a,b] {} Пусь t-произвольное разбиение git={(j,r), jÎ[ji-1,ji], 0£r£mi=inff(j)} Git={(j,r), jÎ[ji-1,ji], 0£r£Mi=supf(j)} Т.к. ф-ция f(x)-непрерывна на отр[a,b] то она интегрируема на этом отрезкеÞ Площадь сектора git=m²iDj/2 и Git=M²iDj/2; Sgt=1/2×åi=1itm²iDj  SGt=1/2×åi=1itM²iDj  по критерии итегрируемости Þ lim|t|®0SGt= lim|t|®0Sgt=S=1/2× aòtf²(j)djÞ P-квадрируема и Sp=1/2× aòbf²(j)dj.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#53 Пусть y=f(x) определна на [a,+¥)  и интегрмруем на " [a;b] Þ несобственный интеграл по промежутку [a,+¥) под ф-ей f(x) обозначен следующий предел aò+¥f(x)dx=limb®+¥ aòbf(x)dx. Если указанный предел конечен ,то интеграл aò+¥f(x)dx называется сходящимся, если бесконечен или не существует, то расходящийся. {} Пусть сÎ[a,+¥) Þ aòbf(x)dx= aòcf(x)dx+ còbf(x)dx {Т} По св-ву пределов aò+¥f(x)dx cущ Û когда сущ limb®+¥ aòbf(x)dx  {Док} Существование интеграла (2) эквивалентно существованию предела, что в свою очередь эквивалентно выполнению условия Коши: для любого E > 0 существует b0 где а < b0 < b, такое, что выполняется неравенство |F(b’’)-F(b’) для всех b' и b", удовлетворяющих неравенствам b0 < b' < b" < b. Но F(b’’)-F(b’)=b’òb’’f(x)dx Þ теорема доказана. {O} Несобственным интегралом по промежутку (a;b] от ф-ции f(x) называется следующий предел  aòbf(x)dx= lima+0 aòbf(x)dx. Если указанный предел конечен то ò называется сход, если бесконечен или не сущ то расх. {О} aòсf(x)dx и сòbf(x)dx при a<c<b –сходятся одновременно то aòbf(x)dx- также сходится. {Св-ва} f(x) определена на [a,b) интегрируема на любом отр. a<h<b и f(x)®¥ при х®b-0, если b<+¥ {Св1} aòbf(x)dx= limb-0 F(h)-F(a)=F(x)|ba $aòbf(x)dx  Û  $limb-0 F(h) {Д} Пусть a<h<b тогда по ф-ле Ньютона-Лейбница aòbf(x)dx=F(h)-F(a) Þ по св-ву пределов aòbf(x)dx= limb-0 F(h)-F(A){2} aòbf1(x)dx и aòbf2(x)dx  -сходятся,  то aòb (mf1(x)+l aòbf2(x))dx=m aòbf1(x)dx+l aòbf2(x)dx  {До} Пусть a<h<b aòh (mf1(x+lf2(x))dx= maòh f1(x)dx+laòh f2(x)dx  т.к. по усл. теор $limb-0aòh f1(x)dx и $limb-0aòh f2(x)dx то сущ левой части полученного равенства Þ переходя в этом рав-ве к пред. получ утв{3}Если f(x)<=g(x), xÎ[a,b] b aòbf(x)dx, aòbg(x)dx – сход , то aòbf(x)dx<= aòbg(x)dx {Д} a<h<b Þ aòhf(x)dx<= aòhg(x)dx переходя в данном нер-ве к limb-0 получаем утв{4} Пусть u(x) и v(x) –непрерыны вместе со своими производными на [a,b) Þ aòbu(x)v’(x)dx=u(x)v(x)|ba- aòbu’(x)v(x)dx {Д} Пусть a<h<b тогда по ф-ле интегрирования по частям для опр aòhu(x)×v’(x)dx = y(x)v(x)|ah - aòhu’(x)×v(x)dx Þ по св-ву пределов Если сущ пределы любых выражений в последнем равенстве то сущ предел 3-его ; При сущ ук пределов переходя в последнем рав-ве к пред пол.  утв.; {5} f(x) непрерывно на  [a,b), x=j(t) непрерывна вместе со своей производной на [a,b)  и возрастает на этом промежутке, причём для a<=t<b Þa<=j(t)<b=limt®b-0j(t) тогда имеет место : aòbf(x)dx= aòbf(j(t))j’(t)dt {Д} Пусть xÎ[a,b) т.к. ф-ция непр на [a,b) то она отрораж. отр [a,x] на [a,j(x)] Þ по теореме о замене переменной в опред ò получ утв.

         #54 Будем считать что f(x) определён на [a,b) -¥<a<b£+¥ {T1} Пусть f(x)³0 "xÎ[a,b) и интегрируема на любом отрезке [a,h]. Для того чтобы интеграл aòbf(x)dx сходился необходимо и достаточно, чтобы все интегралы aòhf(x)dx, a<h<b были ограничены в совокупности т.е. $ M>0 | aòhf(x)dx<M {T2 признак сравнения} Пусть функция f(x) и g(x) не отрицательные на промежутке [a;b) и f(x)=O(g(x)), x®b-0, тогда если aòbg(x)dx- сходится, Þ сходится и aòbf(x)dx  Если aòbg(x)dx – расход Þ aòbf(x)dx – расход. {Док-во} Т.к. f(x)=O(g(x)), x®b-0 тоÞ существует левая окрестность (.) В  для любого х. Т.к. aòbg(x)dx –сход Þ aòbf(x)dx – сх Þ по Т1Þ"h,(h0,b) h0òhg(x)dx£M(M=const) Þ " xÎ(h0,b) h0òhf(x)dx£C   h0òhg(x)dx£CM Þ все интегралы h0òhf(x)dx ограничены в совокупности, по этому в теореме 1 h0òbf(x)dx-схÞaòbf(x)dx –сх; Аналогично если aòbf(x)dx-расход Þaòbg(x)dx- расх  {Предельный признак сравнения} Пусть для не отрицательных ф-ций на [a,b) f(x),g(X)³0 существует возможно бесконечный предел $ limx®b-0f(x)/g(x)=k, тогда 1) при 0£k<+¥ из сходимости aòbg(x)dx Þ сх-тьaòbf(x)dx; 2) при 0<k£+¥ из расходимости aòbg(x)dx Þ расх-тьaòbf(x)dx; В часности при 0£k<+¥  aòbg(x)dx и aòbf(x)dx сход или расход одновр.{Док-во} 1. 0£k<+¥ По определению предела для E=1 $(h0,b) | " xÎ(h0,b) |f(x)/g(x)-k|<E=1 Þ  k-1<f(x)/g(x)<k+1 Þ т.к. g(x)³0 Þ f(x)<(k+1)×g(x) Þf(x)=o(g(x)), x®b-0 Þ по Т2 Þесли aòbg(x)dx –сх, то aòbf(x)dx-сх. 2) Пусть 0<k£+¥ тогда по опред предела для E={1 при k=+¥ {k/2 при k<+¥ Þ $ (h0,b) | " xÎ(h0,b) f(x)/g(x)>1 при k=+¥  |f(x)/g(x)-k|<k/2 при k<+¥ Þ при к=+¥ g(x)<f(x); при k<+¥ f(x)/g(x)>k/2 Þ g(x)<2f(x)/k; g(x)=O(f(x)), x®b-0 Þ по Т2 Þ если aòbg(x)dx –расход Þaòbf(x)dx –расх.

    #55aòbf(x)dx-называется абс. сход  если сходится aòb |f(x)|dx Если aòbf(x)dx-сх , а aòb |f(x)| dx – расх то aòbf(x)dx- называется условно сход. {Т}Если интеграл абсолютно сходится то он и просто сходится. В самом деле, из сходимости интеграла aòb |f(x)| dx следует, что для любого E>0 на интервале (а, b) найдется точка b0 такая, что если b0 < b' < b" < b, то E> b’òb’’ |f(x)| dx³| b’òb’’ f(x)dx  т. е. для интеграла aòbf(x)dx  выполняется условие Коши. Так как |aòb’f(x)dx|£ aòb’ |f(x)| dx то после перехода к пределу при b'®b для абсолютно сходящегося интеграла aòb f(x)dx получим |aòb f(x)dx|£ aòb |f(x)| dx {Глав зн не соб ò}Пусть ф-ция y=f(x) определена на всей числовой прямой и интегрируема на любом конечном отрезке. Главным значением несобственного -¥ò+¥f(x)dx называется v.p. ¥ò+¥f(x)dx=lim+¥ -hò+hf(x)dx; Главное знач совпадает со значением ¥ò+¥ по этому гл. знач имеет смысл рассматривать несобственный интеграл. Пусть ф-ции f(x) интегрируема на отр. [a,c-E],[c+E,b], E>0 Гл. зн. несоб. ò наз v.p. aòbf(x)dx=limE®0 (aòC-Ef(x)dx +C+Eòbf(x)dx)

    #56 {Интегральный признак сходимости рядов} Пусть f(x) – непрерывна, возрастает на [1;+¥) Тогда å(n=1,+¥)f(n) и 1ò+¥f(x)dx сходятся или расходятся одновременно {Док-во} Т.к. ф-ция непрерывна на полуинтервале [1,+¥) то она интегрируема на люблм отрезке [1,h]Ì[1,+¥) Þ т.к. ф-ция не возрастает на [1,+¥) то для к=1,2,3… f(k)>=f(x)>=f(k+1), при k<=x<=k+1 Þ kòk+1f(x)dx>=kòk+1f(k+1)dx Þ f(k)>= kòk+1f(x)dx>=f(k+1) Þ å(k=1,n)f(k){=Sn}>=å(k=1,n){= 1òn+1f(x)dx} kòk+1f(x)dx>=å(k=1,n)f(k+1){=Sn+1-f(1); Sn>= 1òn+1f(x)dx>=Sn+1-f(1) ; Если 1ò+¥f(x)dx сх Þ $M>0 | "hÎ[1;+¥)  1òhf(x)dx<=M Þ Sn+1-f(1)<= 1òn+1f(x)dx<=M Þ Sn+1<=M+f(1) "n; След-но частичные суммы ряда ограничены сверху Þ ряд сходится; Если ряд сходится то сущ М, то для любого n=1,2,3 … все частичные суммы ограничены сверху 1òn+1f(x)dx<=Sn<=M "n Т.к. для любого hÎ[1,+¥) $n Î N | h<=n 1ònf(x)dx<= 1òhf(x)dx+ hòn+1f(x)dx= 1òn+1f(x)dx<=M т.о. все интегралы от 1 до h f(x)dx  ограничены в совокупности, значит 1ò+¥f(x)dx-сход. ЧТД

1. Понятие n-мерного арифметического пространства Rn. Метрика. Метрические пространства. Открытые и замкнутые множества в Rn.

2. Общее определение функции.  Сложная, неявно и параметрически  заданная функции, обратная функция.

3. Предел числовой последовательности. Теорема о единственности предела числовой последовательности. Ограниченность сходящейся последовательности.

4. Бесконечно малые и бесконечно  большие последовательности и  их свойства. Свойства пределов, связанные с арифметическими  операциями над последовательностями. Переход к пределу в неравенствах.

5. Понятие предела  функции. Односторонние пределы.  Теорема о единственности преЯсла.  Теорема об ограниченности (на  некоторой окрестности точки а } функции f(х), имеющей конечный предел при х® а. Бесконечно малые и бесконечно большие функции и их свойства.

6. Связь функции с ее пределом. Арифметические операции над  пределами функций. Предельный переход в неравенствах.

7. Теорема о пределе  сложной функции.               

8. Сравнение функций. Эквивалентные функции. Сравнение бесконечно малых функций.

9. Непрерывность функций в точкеке.  Односторонняя непрерывность. Точки  разрыва функции их классификация. Теорема о сохранении -знака непрерырывной функции.

10. Свойства непрерывных  функций на промежутках. Равномерная непрерывность.

11. Теорема о непрерывности  сложной функции.

12. Теорема о непрерывности  обратной функции.

13. Непрерывность элементарных  функций.

14. Понятие числового  ряда. частичные суммы, определение  сходимости ряда. Критерий Коши  сходимости ряда. Необходимое условие сходимости ряда. Исследование на сходимость ряда

Информация о работе Шпаргалка по математике