Шпаргалка по математике

Автор работы: Пользователь скрыл имя, 03 Декабря 2013 в 00:38, шпаргалка

Описание работы

#1{ пространство}Множ всех упорядоченных наборов n действ чисел с определенными на этом мн-ве функциями p(x,y) называется n-мерным арифметическим пространством и обозн Rn. {Открытые и замкнутые множ в прос-ве R ''}Множ xÎR'' назыв открытым если весь Х лежит в R то для любой точки "xÎX $ e >0 такая что U(x,e) принадл Х любое открытое множ содерж данную точку называется его окрестностью.

Файлы: 1 файл

matan.doc

— 342.00 Кб (Скачать файл)

#33(Правило Лапиталя) 1)Ф-ции f(x) и g(x) опред на полуинтервале (a,b] ;2) limx®a+0f(x)=limx®a+0g(x)=0; 3) Существуют произв (конечн) f’(x) and g’(x) на (a,b] y’¹0 ; 4) Сущесвует (конечн или нет) limx®a+0f’(x)/g’(x)=k тогда limx®a+0f(x)/g(x)=k {Док-во} доопределим ф-ции f(x) и g(x) при x=a наложив f(0)=g(0)=0 ; Тогда мы получим непрерывные на отрезке [a;b] ф-ции (т.к. в т.a знак а f и g совпадают со значениями пределов, а  в остальных точках непрерывность вытекает из существования производных) По теореме Коши. f(x)/g(x)=(f(x)-f(a))/(g(x)-g(a)=f’(c)/g’(c); где a<c<x  ; g(x)¹0 ( т.к. если g(x)=0=g(0)Þ$ lÎ(a,x) g’(l)=0-это не возможно по условию.  Если x®a Þ c®a Þ limx®a+0f(x)/g(x)= limx®a+0f’(x)/g’(x)=k {}{T2}Пусть 1)f,g опр и непр на положит [c;+¥) c>0 ; 2) limx®+¥f(x)=limx®a+¥g(x)=0; 3)Сущ(кон) произв f’(x) and g’(x) на [c,+¥)  g’(x)¹0 ;4)$ limx®a+¥f’(x)/g’(x)=k Тогда limx®a+¥f(x)/g(x)=k {д} Замена t=1/x, если x®+¥Þt®0 по условию 2) limt®0f(1/x)= limt®0g(1/x)=0 ;По усл 4) limt®0f’(1/t)/g’(1/t)=k Þпо т1 limx®a+¥f(x)/g(x)= limx®a+¥f’(x)/g’(x)=k   {}{T3}1)Ф-ции f(x) и g(x) опред на полуинтервале (a,b] ;2) limx®a+0f(x)=+¥; limx®a+0g(x)=+¥; 3) Существуют произв (конечн) f’(x) and g’(x) на (a,b] y’¹0 ; 4) Сущесвует (конечн или нет) limx®a+0f’(x)/g’(x)=k тогда limx®a+0f(x)/g(x)=k

#34 Ф-ла Тейлора {Т} Путь ф-ция y=f(x) опред и непр на (a,b) и имеет в т.хÎ(a,b) производные до порядка n включительно f’(x),f’’(x),…,f(n)(x);  f(x)=f(x0)+f’(x0)(x-x0)/1!+ f’(x0)(x-x0)²/2!+…+ f(n)(x0)(x-x0)(n)/n!+o((x-x0)n)-формула Тейлора с остаточным членом Пеано. f(x)=f(x0)+f’(x0)(x-x0)/1!+ f’(x0)(x-x0)²/2!+…+ f(n)(x0)(x-x0)(n)/n!+f(n+1)(c)(x-x0)n+1/(n+1)!-формула Тейлора с остаточным членом Лагранжа. Pn(x)=f(x0)+f’(x0)(x-x0)/1!+…+f(n)(x0)(x-x0)n/n!-ф-ла Тейлора в степени n, а ф-ция rn(x)=f(x)-Pn(x)-остаточный член ф-лы Тейлора; При х=0 ф-ла Маклорена. {Д} Найдём многочлен Pn(x)=A0+A,(x-x0)n ;Pn(x0)=f(x0), Pn’(x0)=f’(x0),…,Pn(n)(x0)=f(n)(x0)  (1) Дифференцируя данный многочлен получим Pn(x)=A0+a1(x-x0)+…+An(x-x0)n;Pn(x0)=f(x0),Pn’(x0)=f’(x0),…,Pn(n)(xn)=f(n)(x0); Pn’(x)=A1+2A2(x-x0)+…+nAn(x-x0)n-1 ; P’’n(x)=2×A2+3×2×A3(x-x0)+….+n(n-1)An(x-x0)n-2 ;Pn(n)=n×(n-1)×(n-2)×…×An; P(x0)=A0=f(x0); Pn(x)=f(x0)+f’(x0)(x-x0)/1!+fn(x0)(x-x0)²/2!+…+f(n)(x0)(x-x0)n/n!; Pn(x0)=f(x0), Pn’(x0)-f’(x0),…,Pn(n)(x0)=f(n)(x0) ; rn(x)=f(x)-Pn(x) Т.к. деференцир rn(n-1)(x) диф-фма в (×) x0 то limx®x0rn(n-1)(x)/(x-x0)= limx®x0 (rn(n-1)(x))-rnn-1(x0)/(x-x0)=rnn(x0)  Раскрывая по правилу Лапиталя получим limx®x0rn(x)/(x-x0)n= limx®x0rn’(x)/n(x-x0)n-1=…= limx®x0rn(n-1)(x)/n!(x-x0)=rn(n)(x)/n!=0 Þrn(x)=o((x-x0)n),x®x0

#35Разложение основных элементарных ф-ций по формуле Маклорена. 1)f(x)=ex, f(0)=1, f(k)(x)=ex, f(k)(0)=1, ex=1+x+x²/2!+…+xn/n!+o(xn), x®0; 2)f(x)=sinx, f(0)=0, f’(x)=cosx, f’’(x)=-sinx, f’’’(x)=-cosx, f(IV)(x)=sinx,…; f(k)(x)={(-1)msinx, k=2m {(-1)m-1cosx, k=2m-1 m=1,2,…; f(2m-1)(0)=(-1)m-1 полагая n=2m получим sinx=x-x3/3!+x5/5!-…+(-1)n-1x2m-1/(2m-1)!+o(x)2m,x®0; cosx=1-x²/2!+x4/2!-x6/6!+….+(-1)mx2m/(2m)!+o(x2m+1),x®0; 4)f(x)=ln(1+x)…f(0)=ln1=0, f’(x)=1/(1+x), f’’(x)=-1/(1+x)², f’’’(x)=2/(1+x)3…,f(k)(x)=(-1)k-1(k-1)/(1+x)k ;f(k)(0)=(-1)k-1×(k-1)! Подставим в формулу Тейлора Þ l(1+x)=x-x²/2+x3/3+..+(-1)n-1xn/n+o(xn),x®0 ; 5)f(x)=(1+x)b  f(0)=1, f’(x)=b(1+x)b-1, f’’(x)=b(b-1)(1+x)b-2; f(k)(x)=b(b-1)…(b-k+1)(1+x)b-k ;f(k)(0)=b(b-1)…(b-k+1); (1+x)b=1+b×x+b(b-1)x²/2!+…+b(b-1)…(b-n+1)xn/n!+o(xn), x®0

#36 Признак монотонности ф-ции. {Т} Пусть ф-ция f(x) дифференцируема на (a,b), для того, чтобы ф-ция возрастала(убывала) на этом интервале необходимо и достаточно чтобы во всех точках этого интервала выполнялось f’(x)>=0 (f’(x)<=0) Если во всех точках интервала f’(x)>0 (f’(x)<0), то ф-ция строго возрастает (убывает) на интервале (a;b) {Д} Пусть f-возрастает (убывает) x0Î(a,b), Dx>0, тогда f(x0+Dx)-f(x0)>=0; Dx®0; (Dy<=0) Þ Dy/Dx>=0 (Dy/Dx<=0) Þ f’(x0)=limDx®0Dy/Dx>=0 (f’(x0)<=0); {}Пусть " xÎ(a,b) f’(x)>=0 (f’(x)<=0)  a<x1<x2<b по теореме Лагранжа f(x2)-f(x1)=f'(c)(x2-x1), x1<c<x2; Т.к. x2-x1>0, f’(c)>=0  (f’(c)<=0)Þ f(x2)-f(x1)>=0 (f(x2)-f(x1)<=0)Þ f(x2)>=f(x1)  (f(x2)<=f(x1)) Þ ф-ция возрастает (убывает) Если f’(x)>0 xÎ(a,b)  (f’(x)<0,xÎ(a,b))Þf’(c)>0 (f’(c)<0)Þf(x2)-f(x1)>0 (f(x2)-f(x1)<0)

#37{Т}Пусть (×) x0 –является точкой экстремума ф-ции f(x), тогда производная в этой точке =0 либо не существует. {Док} Т.к. (.) x0 –экстремум Þ $ U(x0,d) | " xÎU(x0,d) f(x)>=f(x0) или f(x)<=f(x0) т.е. в (.) x0 ф-ция y=f(x) принимает наибольшее или наименьшее значение в окр.U(x0,d)Þ по теорме Ферма произв если она сущ то =0 {Т} Достаточное условие экстремума: Пусть ф-ция y=f(x) дифференцируема в некоторой окресности (.) x0 за исключением быть может самой точки х0 в которой она непрерывна. Тогда если при переходе через точку х0 производная ф-ции меняет знак (т.е. $ d>=0 | " xÎ(x0,x0+d] f’(x)<0 (or f’(x)>0), а " xÎ(x0-d,x0] f’(x)<0 (or f”(x)>0) то х0 является экстремумом при этом для xÎ(d,x0+d); f’(x)>0,a для xÎ(x0-d,x0) f’(x)<0 то x0 –макс , а для xÎ(x0-d,x0) f’(x)<0, а для xÎ(x0,x0+d) f’(x)>0 то xo-мин. {До} Пусть для xÎ(x0-d,x0) f’(x)>0 для xÎ(x0,x0+d) f”(x)<0. По теореме Лагранжа Df=f(x)-f(x0)=f’(x)(x-x0) x между х0 и х Если х>x0 Þ x-x0>0 x0<x<x , f’(x)<0ÞDf<0. Если х<x0 Þ x-x0<0, x<x<x0, f’(x)>0ÞDf>0 Þ f(x)<f(x0) x0-макс x-min –аналогично

#38 Пусть y=f(x) определена и непрерывна на промежутке Х ф-ции называется выпуклой (вогнутой) если "x1,x2 ÎX выполняется нер-во f(q1x1+q2x2)<=q1f(x1)+q2f(x2) (f(q1x1+q2x2)>=q1f(x1)+q2f(x2)), где " q1>0,q2>0, q1+q2=1 Геом интопрет: x=q1x1+q2x2 (x1<x2) q1>0,q2>0, q1+q2=1 тогда т.х лежит между точками х1 и х2{Док-во} (x-x1=q1x1+q2x2-x2=x1(q1-1)+q2x2=-x1q2+q2x2=q2(x2-x1)>0Þx>x1Þx2-x=x2-q1x1-q2x2=x(1-q2)-q1x1=x2q1-q1x1=q2(x2-x1)>0Þx1<x<x2{Зам}y=f(x)-выпккла(вогнута) тогда для "х q1x1+q2x2  q1=(x2-x)/(x2-x1); q1=(x-x1)/(x2-x1) выполнено неравенство (f(x)-f(x1))/(x-x1)<=(>=)(f(x2)-f(x))/x2-x1) (1) {Т1} Пусть ф f(x) опред. и непрерыв. на пром. Х и имеет на этом пром. кон . произв. Для того чтобы выпукла(вогнута) Û f’(x)- возратала(убывала) на Х {Док-во} Пусть ф-ция выпукла на Х и х1<х<х2 Тогда вып нер-во (1) переходя в этом нер-ве к пределу х®х1 или х®х2 получим f’(x1)<=(f(x2)-f(x1))/(x2-x1) x®x1 (f(x2)-f(x1))/(x2-x1)<=f’(x2)  x®x1 Þf’(x)<=f’(x2)Þ  производная возрастает {Обр} Пусть произв. возрост. то по теор Лагранжа (f(x2)-f(x1))/(x2-x1)=f’(x) Причём т.к. (f’(x1)<=f’(x2) Þ выполнено нер-во 1 Þ ф-ция выпукла. {Т} Пусть ф-ция y=f(x) определена и непрерывна вместе со своей производной на промежутке (Х) и имеет на этом промежутке конечную вторую производную, для того чтобы ф-ция была выпуклой ( вогнутой) на X необходимо и достаточно, чтобы на этом промежутке выполнялось нер-во f’’(x)>=0 (f’’(x)<=0) {Док} f-выпуклая(вогнутая) Û f’ – возрастает(убывает) Û f’’<=0 (f’’>=0) {(.) перегиба} Пусть y=f(x) –дифференцируема в (.) x0 и y=e(x)-ур-ние касательной к графику ф-ции у=f(x) в (.) х0. Если при переходе через (.) х0 выражение f(x)-e(x)- меняет свой знак то (.) х0 называется точкой перегиба. {T}Достаточное условие точки перегиба. Если х0 является точкой перегиба ф-ции f(x) и вэтой точке существует вторая производная, то она равна 0 {Д} Уравнение касательной к графику ф-ции y=f(x) в т. х0 имеет вид L(x)=f(x0)+f’(x0)(x-x0) Разложим ф-цию f(x) в окр. т. х0 по Тейлору с остаточным членом в форме Пеано: f(x)=f(x0)+f’(x0)(x-0)+f’’(x0)(x-x0)²/2!+a(x)(x-x0)², a(x)®0 при x®x0 ; f(x)-L(x)=(f’’(x0)+2a(x))(x-x0)²/2! ; Если предположить что f’’(x)¹0 то т.к. a(х)®0 при х®х0 в достаточно малой окр. т. х0 знак в правой чсти аоследнего равенства совпадает со знаком f’’(x) Þ при переходе через т. х0 выражение f(x)-L(x) не меняет знак, значит т. х0 не является точкой перегиба, а это противоречит условию Þ f’(x0)=0 {Т}Достаточное условие (.) перегиба: Пусть ф-ция y=f(x) дифференцируема в (.) х0 и дважды дифференцируема в некоторой выколотой окрестности U(x0,d) Если при переходе через (.) х0 f’’ меняет знак, то это точка перегиба.{Док-во} Рассмотрим f(x)-L(x)=f(x)-f(x0)-f’(x0)(x-x0)=(по теореме Лагранжа ; x лежит между х и х0) =f’(x)(x-x0)-f’(x0)(x-x0)=(Т Лагранжа h леж ме/ду x и х0)=(x-x0)(f’(x)-f’(x0))=(x-x0)(x-x0)f’’(h); Т.к. т-ка x лежит между х0 их то т-ки х и x лежат по одну сторону от т. х0 Þ(х-х0)(x-х0)>0 поэьому знак f(x)-L(x) совпадает со знаком f’’(h); Т.к. т. h лежит между x и х0 то т-ки х и h лежат по одну сторону от т. х0 Þ Если при переходе через т. х0 вторая производная меняет знак то и вырожение f(x)-L(x)- также меняет свой знак Þ х0-т. перегиба.

#39 Асимптоты:Пусть кривая задана ур-нием y=f(x) где х>A=const и ф-ция f(x) – непрерывна при всех x>A. Пусь прямая L: задана ур-нием : y=ax+b. Если расстояние от точки А (x,f(x)) до прямой L  стремиться к 0 при неограниченном возрастании х, то прямая называется асимптотой кривой гаммы соответсвующей х®+¥  Аналогично при х®-¥{}Найдём расстояние до пр L r(x)=|f(x)-ax-b|/Ö(1+a²) Т.к. прямая L –является асимптотой то limx®+¥r(x)=0Þ limx®+¥(f(x)-ax-b)=0Þ limx®+¥(f(x)/x-a-b/x)=0Þ limx®+¥(f(x)/x-a)=0Þ a= limx®+¥f(x)/x ; b= limx®+¥(f(x)-ax). Для отыскания асимтоты необходимо вычислить limx®+¥f(x)/x если этот lim несущ то асимтоты соответсвующей к стремлению х®+¥ нет. Если этот предел существует и = а то находим b тогда y=ax+b –является асимтотой. {}Пусть функ-ции y=f(x) определена возможно в односторонней окрестности т. х0 и если для этой ф-ции выполняется хотябы одно из равенств limx®х0-0f(x)=¥ limx®х0+0f(x)=¥ то прямая х=х0 называется вертикальной асимптотой.

#40 {O} Ф-ция F(x) называется первообразной для ф-ции f(x) на промежутке Х если эта ф-ция Дифференцирунма на этом промежутке и во всех точках промежутка выполняется равенство F’(x)=f(x) {T} Для того чтобы две дифференцируемые ф-ци F(x) и j(x) были первообразными для одной и той же ф-ции f(x) необходимо и достаточно чтобы они отличались на const {Док-во}Пусть F(x) – первообразная для f(x) тогда тогда F’(x)=f(x) Þ(F(x)+c)’=F’(x)=f(x)ÞF(x)+c-первообразная для f(x) Если F(x) и j(x) – первообразные для f(x) то рассмотрим ф-цию y(х)=F(x)-j(x) для неё y’(x)=F’(x)-j’(x)=f(x)-f(x)=0 Пусть х1,x2ÎX Þпо теореме Лагранжа y(х2)-y(х1)=y’(c)(x2-x1)=0 т.е y(x2)=y(x1) Þy(x)=c=const {T} Если F1(x) и F2(x)-две первообразные для f(x) на (a,b), то F1(x)-F2(x)=C на (a,b), где C- некоторая постоянная.

#41 {O}Пусть ф-ция f(x) определено на Х мн-во всех первообразных ф-ции f(x) на пром Х называется неопределённым интегралом и обозначается òf(x)dx ; Если F(x)-первообразная для f(x) то òf(x)dx=F(x)+C; {Cв-ва} 1)Если ф-ция F(x) дифференцируема на Х, то òF’(x)dx=F’(x)+C; 2)Если ф-ция f(x) имеет первообразную на Х то для всех точек из этого промежутка d(òf(x)dx)=f(x)dx; 3)Пусть f1 and f2 имеют на промежутке Х первообразную тогда ф-ция f1+f2 –также имеет на этом промежутке первообразную и выполнено равенство ò(f1(x)+f2(x))dx=òf1(x)dx+òf2(x)dx {д} пусть F1(x)-первообразная для f1(x), F2(x)-первообразная для f2(x), тогда F1(x)+f2(x)-непрерывна для f1(x)+f2(x), т.к. (F1(x)+F2(x))’=F1’(x)+F2’(x)= f1(x)+f2(x); 5)Если F(x) –первооб для f(x), то òf(ax+b)dx=1/aF(ax+b)+C {д} в самом деле [1/aF(ax+b)]’=1/a×aF’(ax+b)=f(ax+b);

#42 Метод замены переменой в неопò: Пусть f(x) определена и непрерывна на соответствующем интервале и х=j(t) –непрерывно дифференцируема ф-ция на некотором интервале изменения t, тогда òf(x)dx=òf(j(t))j’(t)dt+C=òf(j(t))d(j(t))+C-ф-ция интегрирования замены переменной. {Т по частям} Пусть ф-ция U(x),V(x) –дифференцируема на некотором промежутке Х и существует òU(x)V’(x)dx тогда существует интеграл òV(x)×U’(x)dx=U(x)×V(x)-òU(x)×V’(x)dx –ф-ла дифференцирования по частям. {Док-во} Т.к. ф-ция U(x) и V(x) дифференцируемы на промежутке Х то по правилу дифференцирования произведения получим (U×V)’=U’V+UV’ÞU’V=(UV)’-UV’; Т.к. существует итегралл òUV’dx  по условию Если $ ò(UV)’dx=UV+C то $òU’Vdx=ò(UV)’dx-òUV’dx=UV-òUV’dx+C Þ производную постоянную к òU’Vdx=UV-òUV’dx; Пример òexsinxdx=exsinx-òexcosxdx=|U’(x)=ex V’(x)=sinx|=exsinx-(excosx-òexsinxdx); òexsinxdx=exsinx-excox-òexsinxdx; 2òexsinxdx=exsinx-excosxÞ òexsinxdx=(exsinx-excosx)/2

#43По основной теореме алгебры каждый многочлен степени n имеет n –корней с учётом кратности Pn(z)=A1(z-z1)k1×…×(z-zs)ks, k1+…+ks=n; Пусть а-корень кр-ти м многочлена Pn(z)ÞPn(z)=(z-a)m×Qn-m(z)Þ a-корень кр-ти m многочлена  Pn(z); Пусть многочлен Pn(x)- имеет действительный коофицент, тогда Pn(x)ºPn(x) xÎR По доказанному: Если  комплексное число а является многочленом Pn(x) то а является также корнем этого многочлена той же кратности. Т.к. (z-a)(z-a) является многочленом с действительным многочленомÞ Pn(x)=(x-a1)a1×…×(x-ar)ar×(x-z1)b1×…×(x-zs)bs×(x-zs)bs=(x-a1)a1×…×(x-ar)ar×(x²+p1x+q1)b1×…×(x²+psx+qs)bs;   Pj²/4-qj<0, j=1,…,s; a1,…,arÎR, Pj,qjÎR {Лема} Пусть Px и Qx –многочлены с действительными коофицентами, причём  степень degP(x)<degQ(x) Сущ а –корень кратности м многочлена Q(x), Q(x)=(x-a)m×Q1(x), Q1(a)¹0 то сущ действительное число А и многочлен с действительными числами P1(x) ,AÎR такие, что P(x)/Q(x)=A/(x-a)m+P1(x)/(x-a)m-1×Q1(x) {}Пусть P(x) и Q(x) –многочлены с действительными коофициентами, причём degP(x)<degQ(x) z1=a+ib, b¹0-является корнем кратности m Q(x), т.е. имеет место равенство Q(x)=(x²+px+q)m×Q1(x), Q1(z1)¹0, p²/4-q<0; то сущ M и NÎR и многочлен с действ. кооф. P1(x) такие что имеет место равенство P(x)/Q(x)=(Mx+N)/(x²+px+q)m+P1(x)/(x2+px+q)m-1Q1(x); При любых действит M и N имеет место: P(x)/Q(x)=(Mx+N)/x²+px+q)m+P(x)/Q(x)-(Mx+N)/(x²+px+q)m=(Mx+N)/(x²+px+q)m+(P(x)-(Mx+N)Q1(x))/(x²+px+q)mQ1(x)     {T}Пусть P(x) and Q(x) –многочлены с действ многочленами причём degP(x)<degQ(x) и для Q(x) имеет место Q(x)=A×(x-a1)a1×…×(x-ar)ar×(x²+p1x+q)×(x²+psx+qs)ps, a1,…,arÎR,p1q1..psqsÎR, P²j/4-qj<0, j=1,…,s ;Тогда существуют числа Ai(j), I=1,..,r; j=1,…,aI Mi(j),Ni(j), I=1,…,s ; j=1,…,bI; P(x)/Q(x)=A1(1)/(x-a1)a1+..+A1(a1)/(x-a1)+…+A2(1)/(x-a2)a2+…+A2(a2)/(x-a2)a2+(M1(1)x+N1(1))/(x²+p1x+q1)b1+…+(M1(b1)x+N1(b1))/(x²+p1x+q1)+…+(Ms(1)x+Ns(1))/(x²+ps+qs)bs+…+(Ms(b)x+Ns(bs))/(x²+psx+qs). ; {}Из этого следует чтоò от правильной рациональной дроби сводиться к интегралу следующих простейших дробей 1.òAdx/(x-a)=Aln|x-a|+C ; 2.òAdx/(x-a)m=Aò(x-a)-mdx=A/(1-m)(x-a)m-1+C 3.ò(Mx+N)dx/(x²+px+q)=(M/2)ln(x²+px+q)+(N-MP/2)(1/a)arctg(x+P/2)/a+C 4.ò(Mx+N)dx/(x²+px+q)m=M/2(1-m)(x²+px+q)m-1+(N-MP/2)òdt/(t²+a²)m

 

 

 

 

 

 

 

 

 

 

#44 Ф-цию вида R(x,mÖ(ax+b)/(cx+d) –называют дробно линейной иррациональностью. С помощью замены t=mÖ(ax+b)/(cx+d) рационализируем интеграл. tm=(ax+b)/(cx+d); x=(b-dtm)/(ctm-a) –рациональная ф-ция от t; dx=(mtm-1(ad-bc)dt)/(ctm-a)²  Þ òR(x,mÖ(ax+b)/(cx+d))dx=òR((b-dtm)/(ctm-a),t) (mtm-1(ad-bc)dt)/(ctm-a)²=òR1(t)dt. R1(t)-рациональная.{} Вида òR(x,Öax²+bx+c)dx, -квадратичная иррациональность  где а, b, c –постоянные числа. Если трёхчлен ax²+bx+c имеет действительные корни х1 х2 то ax²+bx+c=a(x-x1)(x-x2)  и R(x,Öax²+bx+c)=R(x,(x-x1)Ö(x-x2)a/(x-x1)=R1(x,Ö(x-x2)/(x-x1) ; поэтому пусть ax²+bx+c не имеет действит корней и а>0. Тогда подстановка (Эйлера)  t=Ö(ax²+bx+c) +xÖa Þax²+bx+c=t²-2xtÖa+ax²; x=(t²-c)/2t(Öa)+b –рациональная функ-ция от t  Ч.Т.Д ;Если а<0 с>0 (ax²+bx+c)>=0) то можно сделать замену Öax²+bx+c=xt+Öc {}{}

#45 Интегрирование выр R(cosx,sinx); Рационализация òR(cosx,sinx)dx достигается подстановкой t=tg(x/2) (-p<x<p), (универсальная); sinx=2tg(x/2)/(1+tg²(x/2))=2t/(1+t²), cosx=(1-tg²(x/2))/(1+tg²(x/2))=(1-t²)/(1+t²), x=2arctgt, dx=2dt/(1+t²), Þ òR(cosx,sinx)dx=òR(1-t²)/(1+t²),2t/(1+t²))×2dt/(1+t²)= òR1(t)dt{}Если функция R(x, у) обладает свойствами четности или нечетности по переменным х или у, то могут употребляться и другие подстановки, также рационализирующие интеграл.Пусть R(u,v)=P(u,v)/Q(u,v)  (u=cosx, v=sinx).где P и Q—многочлены от u и v. 1) Если один из многочленов P Q четный по v, a другой—нечетный по и, то подстановка t=cosx рационализирует интеграл. 2) Если один из многочленов Р, Q четный по и, а другой—нечетный по и, то подстановка t=sinx рационализирует интеграл. 3) Если Р и Q: а) оба не изменяются при замене и, v соответственно на —и, —v или б) оба меняют знак, то интеграл рационализируется подстановкой t = tg x (или t=ctgx).

#46 {O}Разбиением t[a,b] называется произвольное мн-во точек xi, I=0,1,…,it удовлетворяющее условию x0=a<x1<x2<…<xit-1<xit{} Каждый из отрезков [xi-1,xi] называется отрезком разбиения t{}  Пусть ф-ция y=f(x) определена на [a,b] и t произвольное разбиение этого отрезка, в каждом отрезке разбиения в произвольном образе выберем (.) xiÎ[xi-1,xi] I=1,..,it и рассмотрим сумму st(f,x1,…,xit)=åI=1ixf(xI)Dx; -интегральная сумма {Определение} Число I –называется опред ò ф-ции y=f(x) на отр[a;b] и обозначается aòbf(x)dx Если " E >0 $dE=d(E)>0 | при любом разбиении s мелкости |t|<dE и любом выборе (.) xiÎ[xi-1,xi], I=1,…,it | åI=1itf(xi)Dx-I | <E При этом пишут I=limst  |t|®0 {T}Если ф-ция интегрируема на отр. [a,b] то она ограничина на этом отрезке {Док-во} Пусть ф-ция y=f(x) интегрируема на [a,b] но не является ограниченным. на этом отрезке. На этом отрезке рассмотрим произвольное разбиение t отрезка [a,b] то она ограничена хотя бы на одном на одном отр. разбиения. Пусть это будет отр.[xj0-1,xj0] Тогда на этом отрезке существует последовательность точек $ {xnjo}>0 | limn®¥f(xnjo)=¥ Рассмотрим сумму stI=1itf(xI)Dxi=f(xio)Dxjo +åI=1itf(x)Dxi=f(xjo)Dxjo+B Зафиксируем произвольным образом xiÎ[xi-1,xi] i¹jo limst(f,x1,…,x0n,..,xit)=lim(f(xjo)Dxjo+B)=¥ m>0 существует n0 | st(f,x1,…,xjo(n),…,xit)>m Отсюда Þ, что интегральная сумма при мелкости разбеения |t|®0 не могут стремится ни к какому конечному результату. Предположим, что $ I=lim|t|®0stÞ"E>0 $dE>0 | "t, |t|<dE и любой выбор точек xi выполняется нер-во |dt-I|<EÞ|dt|=|dt-I+I|<|dt-I|+|I| <E+|I| ; M=E+|I| при любом разбиении t в частности при при |t|<dE можно выбрать точки x1,..,xit такие, что |st|>M Þф-ция не может быть не ограничена на отр[a,b]. Ч.Т.Д.

#47{O}Для ф-ции y=f(x) определённой в (.) а положим по определению аòa f(x)dx=0, а для ф-ции y=f(x) интегрируемой на отр.[a,b] положим по опред bòaf(x)dx=-aòbf(x)dx  {Св-во1} aòbdx=b-a действительно ф-ция f(x)º1 на [a,b] по этому при любом разбиении t и любом выборе (.) xi f(xi)=1Þsti=1itf(xi)Dxi=åi=1itDx1=(x1-x0)+(x2-x1)+(x3-x2)+…+(xit-xt-1)=xit-x0=b-a Þ lim|t|®0st=b-a {Св-во2} Пусть f,g интегрируемы на отр [a,b] , тогда ф-ция f+g также интегрируема на отр[а,b] и имет место равенство: aòb(f(x)+g(x))dx= aòbf(x)dx+ aòbg(x)dx {док} Пусть t={xi} i=it i=o xiÎ[xi-1,xi] ,тогда sE(f+g)=åi=1it(f(xi)+g(xi)Dxi=åiti=1f(xi)Dxi+åiti=1g(xi)Dxi=st(f)+st(g) Т.к. f и g - интегриремы на [a,b] то $lim|t|®0st(f)=aòbf(x)dx; $lim|t|®0st(g)=aòbg(x)dx ; $lim|t|®0st(f+g)=aòbf(x)dx+aòbg(x)dx т.о. ф-ция f+g -интегрируема на отр[a,b] и имеет место равенство aòb(f(x)+g(x))dx=lim|t|®0st(f+g)=aòbf(x)dx+aòbg(x)dx {Св-во №3}Пусть ф-ция y=f(x) интегрируема на отр[a,b] тогда для любого действительного числа l ф-ция l×f(x) - интегрируема на отр [a,b]  и имеет место равенство aòblf(x)dx=laòbf(x)dx {Св-во 4} Пусть a<c<b и ф-ция y=f(x) интегрируема на отр[a,c] и [b,c] тогда она интегрируема на отр[a,b] и имеет место равенство: aòbf(x)dx=aòсf(x)dx+сòbf(x)dx {Св-во№5} Если y=f(x) интегрируема на отр [a,b] то она интегрируема на любом отр [c,d] Î[a.b] лежащем в этом отрезке. {Св-во№6} Если ф-ции f и g интегрируемы на [a,b] то ф-ция f-g также интегрируема на [a,b] {Св-во №7} Пусоть f(x) - итегр-ма на [a,b] и на этом отр inf|f(x)|>0 ($ M>0 | " xÎ[a,b] |f(x)|>M) Тогда 1/f(x) - также интегрируема на [a,b]  {Св-во} Пусьт f(x) -интегр-ма на [a,b] и "хÎ[a,b] f(x)³0 тогдаÞ aòbf(x)dx³0

Информация о работе Шпаргалка по математике