Шпаргалка по математике

Автор работы: Пользователь скрыл имя, 03 Декабря 2013 в 00:38, шпаргалка

Описание работы

#1{ пространство}Множ всех упорядоченных наборов n действ чисел с определенными на этом мн-ве функциями p(x,y) называется n-мерным арифметическим пространством и обозн Rn. {Открытые и замкнутые множ в прос-ве R ''}Множ xÎR'' назыв открытым если весь Х лежит в R то для любой точки "xÎX $ e >0 такая что U(x,e) принадл Х любое открытое множ содерж данную точку называется его окрестностью.

Файлы: 1 файл

matan.doc

— 342.00 Кб (Скачать файл)

#15 {Св-ва сходящихся рядов} Если å+¥n=1an сх-ся то сх-ся и любой его остаток, если сходится какой либо остаток то сходися и сам ряд. {Д} Пусть åk=m+1+¥ak-остаток ряда. Обозначим Аn=a1+…+an – n-ая частная сумма ряда  å(1,+¥)an A’s=am+1+…+am+s –s-ая частная сумма åk=m+1+¥ak, тогда A’s=Am+s-Am т.к. $limn®aAnÞ $ limS®+¥Am+SÞ $limS®+¥A’S=lims®+¥Am+S-Am Þ åk=m+1+¥ak cx-cя; Пусть åk=m+1+¥ak сх-ся ; Am+S=AS’+Am; n=m+s Þ An=A’n-m+Am (n>m) Т.к. $lims®+¥A’SÞ$limn®+¥A’n=m Þ $limn®+¥A=limn®+¥An-n+Am Þ ån=1+¥an ряд сх. {Следствие} Если ряд å(1,+¥)an сх-ся и an=å(k=n+1,+¥)ak Þlimn®+¥an=0 {Док} Пусть An=å(1,n)ak, A=limn®+¥An Þ A=An+anÞan=A-A1 Þ limn®+¥an=A-limn®+¥An=0 {Т} Если ряды å(n=1,+¥)an и å(n=1,+¥)bn сх-ся и l-число, то å(n=1,+¥)(an+bn) сх-ся и å(n=1,+¥)lan сх-ся {Д} Пусть Аn=å(k=1,n)ak, Bn=åk=1nbk; A=limn®+¥An, B=limn®+¥Bn; $limn®+¥(An+Bn)=A+B, $limn®+¥lAn=lA Т.к. An+Bn=(a1+b1)+…+(an+bn)- n-ая частичная сумма ряда å(n=1,+¥)(an+bn) и lAn=la1+…+lan- n-ая частичная сумма ряда то данные ряды сходятся.

 #16{T признак сравнения} пусть даны 2 ряда å(n=1..¥)an  и å(n=1..¥)bn   аn>=0  bn>=0  (n=1,2,3…) и $ no такое что при n>no  аn<bn  те из сходимости ряда An ® расход ряда Bn и наоборот. {Док-во} пусть ряд Вn сход  å(к=no+1..¥)bk сход  Аn = a(no+1)+…+a(no+m),  Bn=b(no+1)+…+b(no+n) => $ M>0  такое что Bn<M  "n  An<=Bn<=M => å(k=no+1..¥)ak  сх-ся =>å(k=1..¥)ak сход {Предельный признак сравнения}Если сущ предел lim(n®¥) an/bn =k  то; 1).0<=k<+¥   из сход  åbn следует сходимость åan; 2).0<k<=+¥   из расх  åbn следует расходимость åan {док-во} если 0<=к<+¥  => e=1 $ no такое что при n>no  an/bn<k+e =k+1  => an<(n+1)bn "n>no => из сх åbn следует сходимость åan => åaк  сходится 0<к<=+¥  e=к/2  (к<+¥)  и e=1 к=+¥  $ no такое что при n>no  an/bn>k/2  (k<+¥)  an/bn>1; k=+¥ => при n>no  аn>(k/2)bn   (k<+¥) => из расход åbn =>åаn расх =>åак   а>bn (k=+¥) Þ Утв.

#17{Признак Даламбера не предельный(пр Тейлора)} åan  an>0  n=1,2,3… Если а(n+1)/an <=q<1  (n=1,2,3…) => ряд сход  если  q>=1 ряд расх {Док-во}  аn= a1*a2/a1*a3/a2…an/a(n-1)<=a1q…q=a1qn-1 q<1 т.к. å(n=1,+¥)qn-1 cх-ся как бесконечная => å(n=1,+¥)аn  cх-ся    Пусть а(n+1)/an >=1  => а(n+1)>=an>=…>=a1>=0   lim(n®¥)an¹0  =>ряд расход {Признак Дплмбера предельный} Пусть существует предел: $limn®+¥an+1/an=k; 1)k<1 ряд сх; 2)k>1 ряд расх. {Док-во} k<1 e>0 |k+e<1Þ$ n0 | n>n0 an+1/an<k+e{=q}<1Þ å(k=n0+1,+¥)ak –сх-ся Þ ån=1+¥an сх-ся. Пусть k>1; k<+¥ e>0 | k-e>1 Þ $n0 | при n>n0  an+1/an>k-e>1 Þ ån=1+¥an расход { Радик Признак Коши}  пусть дан ряд åan>0   кор n-ой степ(аn)<=q<1  ряд сх-ся  если кор n-ой степ(аn)>1 ряд расход {cледствие} пусть $ lim(кор n-ой степ(аn))=k; k<1 – ряд сх  к>1 – ряд расход

#18 {O} Знакопеременными рядами называют ån=1+¥(-1)n-1an,   an>0{Т Лейбница}  пусть дан знакоперем ряд å(-1)n-1 сn  cn>0; 1)C(n+1)<=C(n)  n=1,2,3; 2)Lim(n®¥)(Cn)=0  то ряд сход {Док-во}  рассм частичные суммы ряда c чётными номерами S2k можно представить в виде: S2k=(c1-c2)+(c3-c4)+…+(c(2k-1)-c(2k)) Т.к. каждая из скобок положительна то данная частичная сумма образует возрастающую последовательность  по усл теоремы S2k=c1-(c2-c3)-…-(c(2n-2)-c(2n-1))-c2n<c1   $lim(n®¥)(S2n)=S  Рассм теперь сумму с нечётными номерами  S2k+1=S2k+C2k+1  т к limC2k+1 = 0  =>$ lim(k®¥)S2k+1=lim(k®¥)S2k=S; Из вышесказанного следует $lim(n®¥)Sn=lim(n®¥)S2k = lim(k®¥)S2k+1=S  {Док-ть самим}

{Оценка остатка ряда} При выполнении Т Лейбница  знак остатка ряда совпад со  знаком своего 1-го члена и не  превосходит его по модулю          

#19 Ряд ån=1¥an –наз абс сход если сход ряд å|an|. Если åan – cх а å|an| - расх то такой ряд наз усл сх. {Теорема о связи между сх абс и об} Если ряд абсолютно сходится то он и просто сходится {Док} Пусть ряд ån=1+¥an -абс сх Þ ån=1+¥|аn| -сх-ся Þ по критерию Коши "e>0 $ne| при n>ne и "pÎZ p>=0 вып-ся нер-во: |an+an+1+…+an+p|<=|an|+…+|an+p|<e Þ по критерию Коши Þ ån=1+¥an-сх-ся.{Св-ва абс сх рядов} {Т1} Если ån=1+¥an –абс сход, то ряд полученный из него произвольной перестановкой членов также абс сх и имеет тужу сумму. {Т2} Если ряды ån=1+¥an и ån=1+¥bn абс сх то ряд сост из возм попарн произведений aibi взятых в произвольном порядке также абсолютно сход и сумма его = произведению сумм рядов an  и bn {Признаки Даламбера и Каши для рядов с произвольными членами} При исследовании ряда ån=1+¥an  на абс сход к ряду из модулей его членов могут быть применены все признаки сходимости для знакоположительных рядов. {Т1}|an-1|/|an| ; limn®+¥|an-1|/|an|=k; при k<1 ряд ån=1+¥an- сход при k<1 ряд ån=1+¥an-сх при k>1 ряд ån=1+¥an- расх {Т2} Если для посл-ности ånÖ|an|; k=limn®+¥ nÖ|an|; при k<1 ряд ån=1+¥an-сх при k>1 ряд ån=1+¥an- расх.

#20{Ряды с комплексными членами} {О} Посл-ность zn=xn+iyn, n=1,2… имеет своим пределом число z0=x0+y0 Если для "e>0 $ ne | при n>ne вып |zn-z0|<e ; Для того чтобы посл-ность zn=xn+iyn сход  необходимо и достаточно чтобы последовательность хn сход х0 и посл. yn сход у0. {Док-во} Пусть z0=limn®¥znÞ "e>0 $ne | при n>ne =|zn-z0|<e Т.к. |zn-z0|=Ö((xn-x0)²+(yn-y0)²)Þ |zn-z0|>=|xn-x0| и |zn-zo|>= |yn-y0| Þ при n>ne вып. нер-во |xn-x0|<=|zn-z0|<e ; |yn-y0|<=|zn-z0|<e Þ по опр. limn®¥Xn=x0 а limn®¥yn=y0 {}Пусьт дана пос-ность компл. чисел {Zn}. Если существует предел последовательности его частичных сумм в этом случае этот предел называют суммой ряда. В проти вном сл ряд расх. {Т} Для того чтобы ряд zn=xn+iyn сходился и имел своей суммой число s=s+ix Необх. и достаточно чтобы сход ряды å(n=1,+¥)xn и å(n=1,+¥)уn и имели своими суммами числа s и x - соответственно Sn=å(k=1,n)xk+iå(k=1,n)yk и если ряд å(n=1,+¥)zn –сх то limn®+¥zn=0 {Д} Пусть zn=xn+iyn Þ т.к. å(n=1,+¥)zn –сх Þ å(n=1,+¥)xn сх и å(n=1,+¥)уn –сх Þ limn®+¥xn=limn®+¥yn=0 Þlimn®+¥zn=limn®+¥xn+ilimn®+¥yn=0 чтд. {О} Ряд zn назыв абс сход если сход ряд мод zn если сход ряд zn а ряд |zn| расход то усл. сход. {Т} Абсолютно сходящийся ряд сходится.{Д} Пусть å(n=1,+¥)zn –абс сход  Þ å(n=1,+¥)|zn| -сх Þ Т.к. |xn|<=Ö(x²n+yn²)=|zn|, |yn|<=|zn| (zn=xn+iyn) Þ по признаку сравнения å(n=1,+¥)|xn| -cх и å(n=1,+¥)|yn| -сх Þ å(n=1,+¥)xn –сх и å(n=1,+¥)уn-сх Þ å(n=1,+¥)zn –cх  {Т} Для того чтобы ряд абс сходился (zn=xn+iyn) необходимо и достаточно, чтобы ряды xn и yn – абс сход {Д} Пусть å(n=1,+¥)|xn| и å(n=1,+¥)|уn| сх |zn=Ö(xn²+yn²)<= Ö(yn²+2|xn||yn|+yn²) <= Ö(|xn|+|yn|)²=|xn|+|yn| то  по признаку сравнения å(n=1,+¥)|zn| - cх-ся.

 

 

 

 

 

#21{Производная диф…} {O} Производной f(x) в т. х0- называется предел отношение приращения ф-ции к соответсвующему приращению аргумента, когда последние ®0; f'(x0)=limDx®0(f(x0+Dx)-f(x0))/Dx {O} A=const Вырожение АDх –назыв. дифференциалом ф-ции f в т. х0 и обозначают dy или df(x); Приращение Dх обозначают dx и называют дефференциалом независимой переменной т.о. dy=Adx {Т} Если у ф-ции f(x) в (.) x0 существут производная то ф-ция непрерывна в (.) х0 {Док-во} Пусть Dy=f(x0+Dx)-f(x0) т.к. $ limDx®0Dy/Dx=f’(x0)Þ Dy/Dx=f’(x0)+a(Dx), где a(Dx) ®0 при Dх®0 Þ Dy=f’(x0)×Dx+a(Dx), где a(Dх)®0 при Dх®0 Þ Dy=f’(x0)Dx+a(Dx)DxÞ limDx®0Dy=0 Þ в f(x)-непрерывно в т.х0 {O}y=f(x)-определённая в U(x0) в т.х0 называется дифференцируемой при х=х0 исли её приращение Dу=f(x0+Dx)-f(x0), x0+DxÎU(x0) можно представить в виде Dу=АDх+о(Dх), Dх®0{Т} Для того, чтобы ф-ция y=f(x) была дифференцируема, необходимо и достаточно чтобы она в этой точке имела дифференциал. {Док-во} Пусть y=f(x) диффер-ма  в х0 Þ Dy =f(x0+Dx)-f(x0)= ADx+o(Dx), Dx®0; limDx®0Dy/Dx= limDx®0(A+o(Dx)/Dx)=A; т.о. в т. х0 $f’(x0)=limDx®0Dy/Dx=A {Обратно} Пусть ф-ция y=f(x) имеет в т. х0 $f’(x0)=limDx®0Dy/DxÞDy/Dx=f’(x0)+e(Dx), limDx®0e(Dx)=0 Þ Dy=f’(x0)Dx +e(Dx)DxÞ Dy=f’(x0)Dx+o(Dx), Dx®0 Þ ф-ция f- дифференцируема в т. х0

№22 {Геометрический смысл произ} Пусть ф-ция y=f(x)- определена и непрерывна на (a;b) x0, x0+DxÎ(a,b), y0=f(x0), y0+Dy=f(x0+Dx) M0(x0,y0) M(x0+Dx,y0+Dy){картинка} проведём секущую MM0 её ур-ние имеет вид y=y0+k(Dx)(x-x0), k(Dx)=Dy/Dx; Всилу непрерывности y=f(x) в т.(х0) Dу®0 при Dх®0 Þ|M0M|=Ö(Dx²+Dy²)®0 при Dх®0 В этом случае говорят что M®M0 {О} Если $ limDx®0k(Dx)=k0 то прямая уравнение которой y=y0+k(Dx)(x-x0) получается из ур-ния k(Dx)=Dy/Dx при Dх®0 называется наклонной касательной к графику ф-ции у=f(x) в (.) (х0,у0) Т.к. k(Dx)=Dy/Dx, то k0=limDx®0k(Dx)= limDx®0Dy/Dx=f’(x0) Þ уравнение касательной имеет вид y=y0+f’(x0)(x-x0) ; f’(x0)=tga; причём y=y0+k0(x-x0) –называется предельным положением; y=y0+k(Dx)(x-x0) Þ касательная есть предельное положение секущей при M0M т.к. f’(x0)(x-x0)=dy то dy=y-y0 где у-текущая ордината касательной. Т.е. дифференциал ф-ции в (.) х0 есть приращение ординаты касательной.{Уравнение нормали.} Нормалью к графику ф-ции y=f(x) в (.) (х0,у0) называется прямая роходящая через эту точку перпендикулярно касат к графикуэтй ф-ции. Его можно написать, зная точку, через которую она проходит и угловой коэффициент  k=-1/f’(x0) ; y-f(x0)=-1×(x-x0)/f’(x0)  x и y – точки на нормали

#23 Пусть ф-ции U(x) и V(x) –дифференцируемы в (.) х тогда d(U+(-)V)=(U+(-)V)’dx=(U’+(-)V’)dx=U’dx+(-)V’dx=dU+(-)dV; 2)d(U×V)=(U×V)’dx=(U’V+V’U)dx=U’Xdx+V’Udx=Vdu+Udv; 3)d(U/V)=(U/V)'dx=(U'V+v'U)dx/V²=(U'Vdx-V’Udx)/V²=(Vdu-Udv)/

№24 {Производная от сложной ф-ии.} Dh: Пусть:  z=f(y) - дифф. в точке y0 ; y=j(x)  дифф. в точке х0 .   y0=j(x0) тогда сложная ф-ия z=f(j(x))- дифф. в точке х0 и справедлива формула: z’x=z’y×y’x=f’(y)×j’(x) ;  dz/dx=dz/dy × dy/dx {Док}Т.к. z=f(y) - дифф. в точке y0 ÞDz=f’(y0)Dy+a(Dy); Т.к. y=j(x)- дифф. в точке х0 ÞDy=j’(x0)Dx+b(Dx); Dz=f’(y0)j’(x0)Dx+f’(y0)b(Dx)+a(Dy); Т.к y=j(x) - дифф. в точке х0 а значит непрерывна в этой точке Þ (Dx®0ÞDy®0). t(Dx)=f’(x0)b(Dx)+a(Dy); limDx®0t×Dt/Dx; limDx®0t(Dx)/Dx= limDx®0[f’(x0)×b(Dx)/Dx+a(Dy)/Dx]= limDx®0a(Dy)/Dx= limDx®0a(Dy)/Dy× limDx®0Dy/Dx=j’(x0); D(f(j(x)))=(f’(y0)j’(x0))Dx+t(Dx), где limDx®0t(Dx)/Dx=0Þ (f(j(x)))’x=z’x=f’(y0)j’(x0)

#25 {Производная от обратной ф-ии.} Пусть y=f(x) в точке х0 имеет: 1) f’(x)¹0, 2) на промежутке, содержащем х0, обратную ф-цию y=f-1(x)=j(y) 3) y0=f(x0); тогда в (.) х0 существует f’(j)¹0, равная j'(y0)=1/f’(x0). {Док-во} Пусть x=j(y) и двум различным значениям х соответсвует е различных значений у. x¹x0®y¹y0ÞDx¹0® Dy¹0Þ Dy/Dx=1/Dy/Dx ; Пусть y=f(x) дифф. в точке x0 тогда limDx®0Dy=0ÞDx®0ÞDy®0 $f’(x0)=limDx®0Dy/Dx= limDy®01/Dy/Dx=1/limDy®0Dx/Dy=1/j’(y0) ; f’(x0)¹0Þj’(y0)=1/f’(x0)

#26 {Логарифмическая производная} y=[u(x)]v(x),u(x)>0; lny=v(x)lnu(x); y'/y=v’(x)lnu(x)+v(x)×u’(x)/u(x); y’=uv×(v’lnu+v×u’/u); (lny)’=y’/y-логарифмическая производная ф-ции {Производные основных элементарных ф-ций} 1) y=Const Dy=c-c=0ÞlimDx®0Dy/DxÞ(C)’=0 ; 2) y=sinx Dy’=cosx 3)(cosx)’=-sinx 4) (ax)’=axlna 5)(arcsinx)’=1/Ö1-x² 6)(arccosx)’=-1/Ö(1-x²) 7) (arctgx)’=1/(1+x²) 8) (arcctgx)’=-1/(1+x²) 9) (lnx)’=1/x ; 10) (xa)’=a×xa-1

#27 {Производные и дифференциалы выс. порядков}{О} Пусть y=f(x); f(n)(x)=(f(n-1)(x))’ т.о. если говорят что у ф-ции y=f(x) в (.) существует производная n-ого порядка то это означает, что в некоторой окресности (.) х0 определено произведение  n-1 –ого порядка, которая сама имеет производную в (.) х0 f(n-1)(x0) Эта последняя производная и наз. n-ого порядка от ф-ции f {}Дифференциал n-ого порядка} {О} dnf(x)=d(dn-1f(x)) При взятии дифференциала следует учитывать, что величина dx есть произвольное не зависящее от х число которое надо рассматривать как постоянный множитель при взятии производной d²y=d(dy)=d(f’(x)dx)=df’(x)dx=f’’(x)dx²; dny=f(n)(x)dxn ;f(n)=dny/dxn   ) uv(n) = u(n)v + Cn1 u(n-1)v' +Cn2 u(n-2)v'' + … +C1n u(n-k)v(k) + uv(n) k=0nCkn  u(n-k)v(k),(формула Лейбница), Где Cnk  =n!/k!×(n-k)! ,  0! = 1, v(0) = v. (u + v)(n) = åk=0nCkn u(n-k)v(k) - бином Ньютона.  формула Лейбница доказывается по индукции.

#28 {Параметрическое дифференцирование}  Пусть x=x(t), y=y(t) определены в окрестности t0 t=t(x) x0=x(t0) Определена сложная ф-ция Ф(х)=у(t(x)) которая называется параметрически заданным уравнением. Предположим что x(t) и g(t) имеют производные в т. х0 тогда ф-ции Ф(х)=у(t(x)) также имеют производную в (.) х0 и она равна Ф’(x)=y’t(t0)/x’t(t0) Действительно по правилу дифференцирования сложной ф-ции Ф’(x0)=y’t(t0)×t’x(x0); t’x(x0)=1/x’t(t0)  Ф(э(х0)=y’t(t0)/x’t(t0) x’(t0)¹0  Если ф-ция x(t) и g(t) имеет производную x’’(t0) y’’(t0) то Ф’’(x0) равно =(Ф’(x))’x|x=0=(y’t/x’)’ x|x=x0=(y’t/x’t|t|t=t0×t’x|x=x0=y’’tt(t0)×x’t(t0)-y’t(t0)×xtt’’(t0)/(x’t(t0))

#29 Теорема (Ферма). Если функция f(x) имеет производную в точке с и достигает в этой точке наибольшее(наим) значение, то f’(с)=0. Доказательство. Для определенности будем считать, что f(x) имеет в точке с локальный максимум. По определению производной имеем  f’(c)=limDx®0(f(c+Dx)-f(c))/Dx ;Так как у нас f(c)>=f (x) "xÎU(с), то для достаточно малых Dx> 0 ;(f(c+Dx)-f(c))/Dx  откуда в пределе при Dx®0 получим, что f’(с)<=0. Если же Dx<0, то (f(c+Dx)-f(c))/Dx>=0 поэтому, переходя к пределу при Dx®0 в этом неравенстве, получаем, что f’(с)>=0.Из соотношений вытекает, что f'(c)=0.

#30 Теорема (Ролля). Если функция y=f(x) непрерывна на [а, b], дифференцируема на (а, b) и f (а) ==f(b), то существует точка cÎ0(а,b), такая, что f'(c)=0. Доказательство. Если f постоянна на [а, b], то для всех cÎ(a, b) производная f'(c)=0.

Будем теперь считать, что f непостоянна на [а, b]. Так как f непрерывна на [а, b], то существует точка x1Î [а, b], в которой f достигает максимума на [а, b] и существует точка х2Î[а, b], в которой f достигает минимума на [а, b]. Обе точки не могут быть концевыми точками отрезка [а,b], потому что иначе maxf(x)=minf(x)=f(a) =f(b) и f была бы постоянной на [а, b]. Следовательно, одна из точек x1,х2 принадлежит к интервалу (а, b). Обозначим ее через c. В ней достигается локальный экстремум. Кроме того, f'(c) существует, потому что по условию f'(x) существует для всех хÎ(а, b). Поэтому по теореме Ферма f’(c)=0.{} Теорема Ролля имеет простой геометрический смысл. Если выполнены условия теоремы, то на графике функции y=f(x) существует точка (c,f(c)) касательная в которой параллельна оси х.

#31 Теорема(Лагранжа). Пусть функция f(x) непрерывна на отрезке [а, b] и имеет производную на интервале (а,b). Тогда существует на интервале (а, b) точка с, для которой выполняется равенство (f(b)-f(a))/(b-a)=f'(c)  (а<с<b). Док-во: tga=k=(f(b)-f(a))/(b-a) Þ существует т. с в которой касат. к графику параллельна стяг прям концов крив. Рассмотрим  вспомогательную функ-цию F(x)=f(x)-f(a)-(f(b)-f(a))(x-a)/(b-a) данная функ-ция удовлетворяет всем условиям теор Ролля, т.к. она непрерыва на [a,b] в силу непрерывнотси f(x) и (x-a) и имеет на интервале(a,b) F’(x)=f’(x)-(f(b)-f(a))/(f-a)  xÎ(a,b) и F(a)=0=F(b) Þ по теореме Ролля $ сÎ(a,b) | F’(c)=0 Þ f(c)-(f(b)-f(a))/(b-a)=0

      Теорема   Лагранжа имеет простой геометрический смысл, если записать ее в виде (f(b)-f(a))/(b-a)=f’(c) (a<c<b) Левая часть этого равенства есть тангенс угла наклона к оси х хорды, стягивающей точки (a, f(a)) и (b,f(b)) графика функции y=f(x), а правая часть есть тангенс угла наклона касательной к графику в некоторой промежуточной точке с абсциссой сÎ(а, b). Теорема Лагранжа утверждает, что если кривая  есть график непрерывной на [а, b] функции, имеющей производную на (a, b), то на этой кривой существует точка, соответствующая некоторой абсциссе с (а < с < b) такая, что касательная к кривой в этой точке параллельна хорде, стягивающей концы кривой (а, f(а)) и (b, f(b))

#32Теорема(Коши). Если функции f(x) и g(x) непрерывны на [а, b] и дифференцируемы на (а, b), и g'(x)¹0 в (а, b), то существует точка cÎ(a, b) такая, что( f(b)-f(a))/(g(b)-g(a))=f’(c)/g’(c) 

Доказательство. Отметим, что g(b)-g(a)¹0, так как в противном случае, по теореме Ролля нашлась бы точка g такая, что g'(c)=0, чего быть не может по условию теоремы. Составим вспомогательную функцию F(x)=f(x)-f(a)-(f(b)-f(a))×(g(x)-g(a))/(g(b)-g(a))  В силу условия теоремы эта функция F непрерывна на [а, b], дифференцируема на (а, b) и F(a)=0, F(b)=0. Применяя теорему Ролля, получим, что существует точка cÎ(a, b), в которой F'(c)=0 Но F’(x)=f’(x)-(f(b)-f(a))×g’(x)/(g(b)-g(a))  поэтому, подставляя вместо х точку c, получаем утверждение теоремы.

Информация о работе Шпаргалка по математике