Реализация имитационной модели бензоколонки

Автор работы: Пользователь скрыл имя, 13 Июня 2013 в 09:06, курсовая работа

Описание работы

Потом нужно разработать алгоритм и составить программу на
алгоритмическом языке, отладить ее и убедиться в том, что она обеспечивает получение достоверных результатов. Наконец, нужно выбрать конкретные исходные данные и провести серию расчетов при разных значениях входных параметров. Анализ результатов моделирования позволит дать ответ на все вышеперечисленные вопросы.
Для описания работы бензоколонки больше всего подходит схема системы массового обслуживания, или сокращенно СМО. Для таких систем
характерны три отличительные особенности:
1)
имеется поток клиентов,
желающих быть обслуженными (в данном случае это поток автомашин);

Файлы: 1 файл

Ministerstvo_obrazovania_Rossyskoy_Federatsii.doc

— 589.00 Кб (Скачать файл)

Министерство образования Российской Федерации

Осташковский электромеханический  техникум

 

 

«УТВЕРЖДАЮ»

Зам.директора по УР

 

_________ Осипенко С.Е.

 

 

Задание

для дипломного проектирования

 

 

Студентки 46-П группы               Финогенова Яна  Незнаю

 

Специальность                                       230105

 

Тема дипломного проекта:

 

 

 Реализация имитационной модели бензоколонки

 

 

 

 

Данные по проекту:             Публикация в сети Internet

 

 

Дата выдачи задания:                                                           14.05.13 г.

Срок представления проекта:                                              24.06.13 г.

 

 

Председатель комиссии общепрофессиональных и специальных  дисциплин по специальности 230105:

                                               ______________________________  Суркова М.В.

 

Руководитель проекта:        _____________________________ Ахмедова Е.В.

 

Содержание

 
Введение.


                                                                                    Представим ситуацию:  
предприниматель собирается вложить деньги в строительство новой бензоколонки, однако точного представления о том, сколько автомашин будет ежедневно заправляться на этой колонке, у него нет. Их число, вероятно, может  
колебаться в некотором диапазоне. Но он хотел бы ориентировочно знать, какова должна быть оптимальная структура бензоколонки и на получение какой прибыли можно рассчитывать.  
На эти вопросы можно дать ответы с помощью математической модели. Поскольку входные данные имеют неопределенный характер, это должна быть статистическая модель.  
Все начинается с разработки концептуальной модели. Прежде  
всего нужно выбрать математическую схему, которая ближе всего подходит  
к такой экономической системе, как бензоколонка. Нужно также установить 
, что является входными параметрами модели, а что выходными характеристиками. Далее нужно выбрать показатель и критерий эффективности будущей экономической системы.  
Потом нужно разработать алгоритм и составить программу на  
алгоритмическом языке, отладить ее и убедиться в том, что она обеспечивает получение достоверных результатов. Наконец, нужно выбрать конкретные исходные данные и провести серию расчетов при разных значениях входных параметров. Анализ результатов моделирования позволит дать ответ на все вышеперечисленные вопросы.  
Для описания работы бензоколонки больше всего подходит схема системы массового обслуживания, или сокращенно СМО. Для таких систем 
характерны три отличительные особенности:  
1)  
имеется поток клиентов,  
желающих быть обслуженными (в данном случае это поток автомашин); 
2)имеются устройства или  
агрегаты, которые обеспечивают удовлетворение заявок клиентов (в данном случае одна или несколько раздаточных колонок); 
3) имеется определенный набор правил обслуживания клиентов (в данном случае можно, например, считать, что все клиенты равноправны, т. е. никто не имеет права на заправку вне  
очереди). 
СМО различаются прежде всего по числу мест или каналов обслуживания (одноканальная, двухканальная и т. д.).  
Предприниматель пока не знает, сколько раздаточных колонок выгоднее иметь. Если они будут простаивать, он будет терпеть убытки. 
Значит, в модели нужно сделать число каналов обслуживания переменным, т. е. включить его в состав входных параметров. В задачу моделирования будет входить определение оптимального числа каналов. Оно будет зависеть от соотношения между средним временем между поступлением заявок (приезд автомашин) и средним временем  
обслуживания (время заправки), которое нужно задать как входные характеристики модели.  
Среднее время обслуживания можно определить, понаблюдав за работой какой-нибудь действующей бензоколонки. А среднее время между соседними заявками зависит от интенсивности потока автомашин на том участке дороги, где будет бензоколонка. Среднее количество автомашин, которые будут заправляться, необходимо оценить приближенно. Нужно выбрать подходящий для типичного потока автомашин на данном участке дороги закон  
распределения случайных величин времени между соседними автомашинами 
, заезжающими на заправку. Опыт показывает, что лучше всего такой поток описывается показательным распределением с заданным средним значением случайной величины. А возможные значения случайного времени между соседними заявками будут определяться в модели с помощью датчика случайных чисел.  
Но время обслуживания тоже не постоянно для всех автомашин.  
Это случайная величина, и нужно определить закон ее распределения. Понаблюдав за работой действующей бензоколонки, можно установить эмпирическое распределение реального времени обслуживания. Но при построении первого варианта модели чаще всего обычно выбирают одно из стандартных распределений, которое ближе всего подходит к полученному эмпирическому  
распределению. В дальнейшем модель может быть уточнена.  
Для начала остановимся на показательном распределении. Мы 
уже выбрали его для времени между соседними заявками. Там было одно среднее значение для времени между заявками, а здесь другое - для времени обслуживания.  
Для построения модели нужно также высказать предположение 
о том, как будут себя вести клиенты, если им придется стоять в очереди. В СМО обычно описывается один из трех вариантов режима ожидания: с неограниченным ожиданием; с ограниченным ожиданием и без ожидания.  
В нашем случае больше подойдет вариант с ограниченным ожиданием. При этом достаточно ввести в модель в качестве входной переменной 
максимальное время ожидания. Тогда в процессе моделирования заявка с временем ожидания, превышающим максимально допустимое, будет покидать систему необслуженной.  
Мы ввели почти все входные переменные. Осталось только ограничить период функционирования системы. Нужно ввести время начала и время конца работы, чтобы расчеты каждой случайной реализации проводились  
в одинаковых условиях.  
Набор выходных характеристик зависит от того, что мы примем  
в качестве показателя эффективности процесса функционирования системы. Это, между прочим, самый важный момент в процессе создания концептуальной модели исследуемой системы.


           Главных способ решения таких задач – математическое моделирование. Каждая СМО включает в свою структуру некоторое число обслуживающих устройств, которые называют каналами (приборами, линиями) обслуживания. Роль каналов могут играть различные приборы, лица, выполняющие те или иные операции (кассиры, операторы, парикмахеры, продавцы), линии связи, автомашины, краны, ремонтные бригады, железнодорожные пути, бензоколонки и т.д. Системы массового обслуживания могут быть одноканальными или многоканальными. Каждая СМО предназначена для обслуживания (выполнения) некоторого потока заявок (требований), поступающих на вход системы большей частью не регулярно, а в случайные моменты времени. Обслуживание заявок, в общем случае, также длится не постоянное, заранее известное время, а случайное время, которое зависит от многих случайных, порой неизвестных нам, причин. После обслуживания заявки канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времени их обслуживания приводит к неравномерной загруженности СМО: в некоторые промежутки времени на входе СМО могут скапливаться не обслуженные заявки, что приводит к перегрузке СМО, в некоторые же другие интервалы времени при свободных каналах на входе СМО заявок не будет, что приводит к недогрузке СМО, т.е. к простаиванию ее каналов. Заявки, скапливающиеся на входе СМО, либо "становятся" в очередь (т.е. образуют список объектов подлежащих обработке), либо по какой-то причине невозможности дальнейшего пребывания в очереди покидают СМО не обслуженными. Закон, определяющий порядок обслуживания входных заявок, называется дисциплиной очереди.

 

 

 

 

 

 

 

 


Раздел 1. Специальная часть

    1. Постановка задачи.

Системой массового  обслуживания (СМО) называется любая система, предназначенная для обслуживания какого-либо потока заявок. 
Примерами систем массового обслуживания могут служить:

  • посты технического обслуживания автомобилей;
  • посты ремонта автомобилей;
  • персональные компьютеры, обслуживающие поступающие заявки или требования на решение тех или иных задач;
  • станции технического обслуживания автомобилей;
  • аудиторские фирмы;
  • отделы налоговых инспекций, занимающиеся приемкой и проверкой текущей отчетности предприятий;
  • телефонные станции и т. д.

В CMО обслуживаемый  объект называют требованием. В общем случае под требованием обычно понимают запрос на удовлетворение некоторой потребности, например, разговор с абонентом, посадка самолета, покупка билета, получение материалов на складе. Средства, обслуживающие требования, называются обслуживающими устройствами или каналами обслуживания. Например, к ним относятся каналы телефонной связи, посадочные полосы, мастера-ремонтники, билетные кассиры, погрузочно-разгрузочные точки на базах и складах.  
Предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности системы массового обслуживания, и эффективностью ее функционирования.  
Основной задачей теории СМО является изучение режима функционирования обслуживающей системы и исследование явлений, возникающих в процессе обслуживания.

В данной работе рассмотрено создание имитационной модели работы бензоколонки.

 

 

 

 

 

 

 

 

 

 


1.2 Выбор метода реализации модели. Обоснование  метода.

Какие стороны изучаемого явления необходимо сохранить в модели и какие отбросить, зависит от постановки задачи исследований. Цель и задачи исследований формулируются перед началом разработки теории еще неизученного явления или уточнения уже существующей теории с целью более адекватного описания изучаемого процесса или явления [7]. Построение теории начинается с выбора некоторого достаточного множества понятий и определения тех объектов, с которыми будет оперировать формируемая теория. Иногда список исходно определяемых понятий и объектов называют терминами теории. Они должны быть определены так, чтобы воспринимались любым исследователем однозначно.

Далее необходимо ввести, при построении модели явления, самые  необходимые свойства определяемых объектов (“кирпичей” теории) и правила  их взаимодействия и преобразования. Список введенных свойств и правил должен быть полным, т. е. таким, оперируя с которым можно осуществить любое действие по решению поставленных в исследовании задач и доведения решения логического и однозначного результата. Указанный список должен быть логически непротиворечивым, иначе создаваемая теория приведет к ошибочным заключениям. Вводимые правила должны быть выполнимы, а результаты их использования однозначными и определенными.

Выделенное множество  объектов-терминов теории и правил их преобразования должно допускать  проверку практикой или иными  надежными методами. При этом выбранная  модель должна обеспечивать необходимую  точность результатов [6].


В философском смысле дать определение некоторому понятию-термину — это значит подвести более узкое определяемое понятие или подпонятие под более широкого и указать отличительную особенность. Это означает, что, давая определения вводимым в теорию терминам, мы определяем их в конце концов через ряд неопределимых исходных понятий. Тем самым становится возможным неоднозначное толкование, которое позволяет прилагать сформулированную теорию к любым явлениям, имеющим в своей основе аналогичные структуры исходных понятий.

Изучение всякого непознанного явления начинается с наблюдения его проявления в природе или в лаборатории. Сделанные наблюдения позволяют высказать ряд исходных предположений (гипотез), позволяющих объяснить на модели изучаемое явление и его свойства. Справедливость высказанных гипотез проверяется экспериментом. Подтвержденные экспериментом гипотезы путем логических рассуждений желательно оформленных в виде математического описания и построения превращаются в теорию исследуемого явления. При этом высвечиваются две стороны явления — качественное и количественное [1].

Таким образом, модель изучаемого явления с помощью вводимых гипотез  приобретает ряд свойств, опираясь на которые можно путем математических и логических действий проследить, как принятая модель взаимодействует  с окружающими объектами и, следовательно, как она реагирует на внешнее воздействие. При этом варианте, возможно, что и первоначальное свойство модели изменится [5].


Модель - это любой образ, аналог, мысленный или установленный, изображение, описание, схема, чертеж, и т. п. какого либо объекта, процесса или явления, который в процессе познания (изучения) замещает оригинал, сохраняя некоторые важные для данного исследования типичные свойства.  
Моделирование - это исследование какого-либо объекта или системы объектов путем построения и изучения их моделей. А также - это использование моделей для определения или уточнения характеристик и рационализации способов построения вновь конструируемых объектов.  
Модель является средством для изучения сложных систем.  
В общем случае сложная система представляется как многоуровневая конструкция из взаимодействующих элементов, объединяемых в подсистемы различных уровней. К сложным системам, в т.ч., относятся информационные системы. Проектирование таких сложных систем осуществляется в два этапа.  
1 Внешнее проектирование.  
На этом этапе проводят выбор структуры системы, основных ее эле ментов, организация взаимодействия между элементами, учет воздействия внешней среды, оценка показателей эффективности системы.  
2 Внутреннее проектирование - проектирование отдельных элементов 
системы.  
Типичным методом исследования сложных систем на первом этапе является моделирование их на ЭВМ.  
В результате моделирования получаются зависимости, характеризующие влияние структуры и параметров системы на ее эффективность, надежность и другие свойства. Эти зависимости используются для получения оптимальной структуры и параметров системы.  
Модель, сформулированная на языке математики с использованием математических методов называется математической моделью.  
Для имитационного моделирования характерно воспроизведение явлений, описываемых математической моделью, с сохранением их логической структуры, последовательности чередования во времени. Для оценки искомых величин может быть использована любая подходящая информация, циркулирующая в модели, если только она доступна регистрации и последующей обработке.  
Искомые величины при исследовании процессов методом имитационного моделирования обычно определяют как средние значения по данным большого числа реализаций процесса. Если число реализаций N, используемых для оценки искомых величин, достаточно велико, то в силу закона больших чисел получаемые оценки приобретают статистическую устойчивость и с достаточной для практики точностью могут быть приняты в качестве приближенных значений искомых величин.  
Сущность метода имитационного моделирования применительно к задачам массового обслуживания состоит в следующем. Строятся алгоритмы,  
при помощи которых можно вырабатывать случайные реализации заданных потоков однородных событий, а также моделировать процессы функционирования обслуживающих систем. Эти алгоритмы используются для много кратного воспроизведения реализации случайного процесса обслуживания при фиксированных условиях задачи. Получаемая при этом информация о состоянии процесса подвергается статистической обработке для оценки величин, являющихся показателями качества обслуживания .

Для начала остановимся  на показательном распределении. Мы уже выбрали его для времени между соседними заявками. Там было одно среднее значение для времени между заявками, а здесь другое - для времени обслуживания.

Для построения модели нужно  также высказать предположение  о том, как будут себя вести  клиенты, если им придется стоять в  очереди. В СМО обычно описывается  один из трех вариантов режима ожидания: с неограниченным ожиданием; с ограниченным ожиданием и без ожидания.

В нашем случае больше подойдет вариант с ограниченным ожиданием. При этом достаточно ввести в модель в качестве входной переменной максимальное время ожидания. Тогда в процессе моделирования заявка с временем ожидания, превышающим максимально допустимое, будет покидать систему необслуженной.

Мы ввели почти все  входные переменные. Осталось только ограничить период функционирования системы. Нужно ввести время начала и время конца работы, чтобы расчеты каждой случайной реализации проводились в одинаковых условиях.

Набор выходных характеристик  зависит от того, что мы примем в  качестве показателя эффективности  процесса функционирования системы. Это, между прочим, самый важный момент в процессе создания концептуальной модели исследуемой системы.


Эффективность - это часто употребляемое  слово, смысл которого не всегда правильно  трактуется. В теории эффективности показателем эффективности называют меру степени достижения поставленной цели.

Предприниматель вкладывает средства в строительство бензоколонки с целью получения прибыли. Но строительство сопряжено и с  расходами, которые зависят от структуры  бензоколонки, т. е. от количества раздаточных  колонок. Нужно выбрать такой  показатель эффективности, который отражал бы влияние на прибыль не только доходов, но и расходов. В первом варианте модели можно предположить, что все будущие клиенты будут заправлять примерно одно и то же количество бензина. Тогда доход будет определяться по формуле:

Дох = С1 * Nобс.ср,

где Дох - средний доход за период функционирования системы;

С1 - средняя стоимость заправки одной автомашины;

Nобс.ср - среднее число заправленных автомашин.

Расходы можно оценить по данным о стоимости строительства действующих бензоколонок. Предположим, что расходы связаны с числом каналов NK некоторой функциональной зависимостью:

Расх = F(NK).

Итак, показатель эффективности для  нашей модели имеет вид:

Информация о работе Реализация имитационной модели бензоколонки