Ламповый усилитель

Автор работы: Пользователь скрыл имя, 14 Мая 2013 в 19:17, реферат

Описание работы

На человека оказывает воздействие главным образом состояние нижних 15–25 км атмосферы, поскольку именно в этом нижнем слое сосредоточена основная масса воздуха. Наука, изучающая атмосферу, называется метеорологией, хотя предметом этой науки являются также погода и ее влияние на человека. Состояние верхних слоев атмосферы, расположенных на высотах от 60 до 300 и даже 1000 км от поверхности Земли, также изменяется. Здесь развиваются сильные ветры, штормы и проявляются такие удивительные электрические явления, как полярные сияния. Многие из перечисленных феноменов связаны с потоками солнечной радиации, космического излучения, а также магнитным полем Земли.

Файлы: 1 файл

Министерство образования и науки РФ.docx

— 113.74 Кб (Скачать файл)

                            1 Введение

  АТМОСФЕРА, газовая оболочка, окружающая небесное тело. Ее характеристики зависят от размера, массы, температуры, скорости вращения и химического состава данного небесного тела, а также определяются историей его формирования начиная с момента зарождения. Атмосфера Земли образована смесью газов, называемой воздухом. Ее основные составляющие – азот и кислород в соотношении приблизительно 4:1.

На человека оказывает  воздействие главным образом  состояние нижних 15–25 км атмосферы, поскольку именно в этом нижнем слое сосредоточена основная масса воздуха. Наука, изучающая атмосферу, называется метеорологией, хотя предметом этой науки являются также погода и  ее влияние на человека. Состояние  верхних слоев атмосферы, расположенных  на высотах от 60 до 300 и даже 1000 км от поверхности Земли, также изменяется. Здесь развиваются сильные ветры, штормы и проявляются такие удивительные электрические явления, как полярные сияния. Многие из перечисленных феноменов  связаны с потоками солнечной  радиации, космического излучения, а  также магнитным полем Земли. Высокие слои атмосферы – это  также и химическая лаборатория, поскольку там в условиях, близких  к вакууму, некоторые атмосферные  газы под влиянием мощного потока солнечной энергии вступают в  химические реакции. Наука, изучающая  эти взаимосвязанные явления  и процессы, называется физикой высоких  слоев атмосферы

               ИСТОРИЯ ПРОИСХОЖДЕНИЯ АТМОСФЕРЫ ЗЕМЛИ

    Историю образования атмосферы пока не удалось восстановить абсолютно достоверно. Тем не менее выявлены некоторые вероятные изменения ее состава. Становление атмосферы началось сразу после формирования Земли. Имеются довольно веские основания полагать, что в процессе эволюции Праземли и обретения ею близких к современным размеров и массы она практически полностью утратила свою первоначальную атмосферу. Считается, что на раннем этапе Земля находилась в расплавленном состоянии и ок. 4,5 млрд. лет назад оформилась в твердое тело. Этот рубеж принимается за начало геологического летоисчисления. С этого времени происходила и медленная эволюция атмосферы.

                                                     

 Некоторые геологические  процессы, как, например, излияния  лавы при извержениях вулканов, сопровождались выбросом газов  из недр Земли. В их состав, вероятно, входили азот, аммиак, метан,  водяной пар, оксид и диоксид  углерода. Под воздействием солнечной ультрафиолетовой радиации водяной пар разлагался на водород и кислород, но освободившийся кислород вступал в реакцию с оксидом углерода с образованием углекислого газа. Аммиак разлагался на азот и водород. Водород в процессе диффузии поднимался вверх и покидал атмосферу, а более тяжелый азот не мог улетучиться и постепенно накапливался, становясь основным ее компонентом, хотя некоторая его часть связывалась в ходе химических реакций.

   Под воздействием ультрафиолетовых лучей и электрических разрядов смесь газов, вероятно присутствовавших в первоначальной атмосфере Земли, вступала в химические реакции, в результате которых происходило образование органических веществ, в частности аминокислот. Следовательно, жизнь могла зародиться в атмосфере, принципиально отличной от современной.

    С появлением примитивных растений начался процесс фотосинтеза (см. также ФОТОСИНТЕЗ), сопровождавшийся выделением свободного кислорода. Этот газ, особенно после диффузии в верхние слои атмосферы, стал защищать ее нижние слои и поверхность Земли от опасных для жизни ультрафиолетового и рентгеновского излучений. По оценкам, наличие всего 0,00004 современного объема кислорода могло привести к формированию слоя с вдвое меньшей, чем сейчас, концентрацией озона, что тем не менее обеспечивало весьма существенную защиту от ультрафиолетовых лучей.

 Вероятно также, что в первичной атмосфере содержалось много углекислого газа. Он расходовался в ходе фотосинтеза, и его концентрация должна была уменьшаться по мере эволюции мира растений, а также из-за поглощения в ходе некоторых геологических процессов. Поскольку парниковый эффект связан с присутствием углекислого газа в атмосфере, некоторые ученые полагают, что колебания его концентрации являются одной из важных причин таких крупномасштабных климатических изменений в истории Земли, как ледниковые периоды.

   Присутствующий в современной атмосфере гелий, вероятно, большей частью является продуктом радиоактивного распада урана, тория и радия. Эти радиоактивные элементы испускают альфа-частицы, которые представляют собой ядра атомов гелия. Поскольку в ходе радиоактивного распада электрический заряд не образуется и не исчезает, на каждую альфа-частицу приходится два электрона.

                                                       

 В итоге она соединяется с ними, образуя нейтральные атомы гелия. Радиоактивные элементы содержатся в минералах, рассеянных в толще горных пород, поэтому значительная часть гелия, образовавшегося в результате радиоактивного распада, сохраняется в них, очень медленно улетучиваясь в атмосферу. Некоторое количество гелия за счет диффузии поднимается вверх в экзосферу, но благодаря постоянному притоку от земной поверхности объем этого газа в атмосфере неизменен.

   На основании спектрального анализа света звезд и изучения метеоритов можно оценить относительное содержание различных химических элементов во Вселенной. Концентрация неона в космосе примерно в десять миллиардов раз выше, чем на Земле, криптона – в десять миллионов раз, а ксенона – в миллион раз. Отсюда следует, что концентрация этих инертных газов, изначально присутствовавших в земной атмосфере и не пополнявшихся в процессе химических реакций, сильно снизилась, вероятно, еще на этапе утраты Землей своей первичной атмосферы. Исключение составляет инертный газ аргон, поскольку в форме изотопа 40Ar он и сейчас образуется в процессе радиоактивного распада изотопа калия.

                  ОБЩАЯ ХАРАКТЕРИСТИКА АТМОСФЕРЫ ЗЕМЛИ

   Размеры. Пока ракеты-зонды и искусственные спутники не исследовали внешние слои атмосферы на расстояниях, в несколько раз превосходящих радиус Земли, считалось, что по мере удаления от земной поверхности атмосфера постепенно становится более разреженной и плавно переходит в межпланетное пространство. Сейчас установлено, что потоки энергии из глубоких слоев Солнца проникают в космическое пространство далеко за орбиту Земли, вплоть до внешних пределов Солнечной системы. Этот т.н. солнечный ветер обтекает магнитное поле Земли, формируя удлиненную «полость», внутри которой и сосредоточена земная атмосфера. Магнитное поле Земли заметно сужено с обращенной к Солнцу дневной стороны и образует длинный язык, вероятно выходящий за пределы орбиты Луны, – с противоположной, ночной стороны. Граница магнитного поля Земли называется магнитопаузой. С дневной стороны эта граница проходит на расстоянии около семи земных радиусов от поверхности, но в периоды повышенной солнечной активности оказывается еще ближе к поверхности Земли. Магнитопауза является одновременно границей земной атмосферы, внешняя оболочка которой называется также магнитосферой, так как в ней сосредоточены заряженные частицы (ионы), движение которых обусловлено магнитным полем Земли.

  Общий вес газов атмосферы составляет приблизительно 4,5´1015 т. Таким образом, «вес» атмосферы, приходящийся на единицу площади, или атмосферное давление, составляет на уровне моря примерно 11 т/м2.

  

Значение для жизни. Из сказанного выше следует, что Землю от межпланетного пространства отделяет мощный защитный слой. Космическое пространство пронизано мощным ультрафиолетовым и рентгеновским излучением Солнца и еще более жестким космическим излучением, и эти виды радиации губительны для всего живого. На внешней границе атмосферы интенсивность излучения смертоносна, но значительная его часть задерживается атмосферой далеко от поверхности Земли. Поглощением этого излучения объясняются многие свойства высоких слоев атмосферы и особенно происходящие там электрические явления.

   Самый нижний, приземный слой атмосферы особенно важен для человека, который обитает в месте контакта твердой, жидкой и газообразной оболочек Земли. Верхняя оболочка «твердой» Земли называется литосферой. Около 72% поверхности Земли покрыто водами океанов, составляющими б льшую часть гидросферы. Атмосфера граничит как с литосферой, так и с гидросферой. Человек живет на дне воздушного океана и вблизи или выше уровня океана водного. Взаимодействие этих океанов является одним из важных факторов, определяющих состояние атмосферы.

   Строение. По сравнению с жидкостями и твердыми телами, в газообразных веществах сила притяжения между молекулами минимальна. По мере увеличения расстояния между молекулами газы способны расширяться беспредельно, если им ничто не препятствует. Нижней границей атмосферы является поверхность Земли. Строго говоря, этот барьер непроницаем, так как газообмен происходит между воздухом и водой и даже между воздухом и горными породами, но в данном случае этими факторами можно пренебречь. Поскольку атмосфера является сферической оболочкой, у нее нет боковых границ, а имеются только нижняя граница и верхняя (внешняя) граница, открытая со стороны межпланетного пространства. Через внешнюю границу происходит утечка некоторых нейтральных газов, а также поступление вещества из окружающего космического пространства. Большая часть заряженных частиц, за исключением космических лучей, обладающих высокой энергией, либо захватывается магнитосферой, либо отталкивается ею.

На  атмосферу действует также сила земного притяжения, которая удерживает воздушную оболочку у поверхности  Земли. Атмосферные газы сжимаются  под действием собственного веса. Это сжатие максимально у нижней границы атмосферы, поэтому и  плотность воздуха здесь наибольшая. На любой высоте над земной поверхностью степень сжатия воздуха зависит  от массы вышележащего столба воздуха, поэтому с высотой плотность  воздуха уменьшается. Давление, равное массе вышележащего столба воздуха, приходящейся на единицу площади, находится  в прямой зависимости от плотности  и, следовательно, также понижается с высотой.

Если  бы атмосфера представляла собой  «идеальный газ» с не зависящим от высоты постоянным составом, неизменной температурой и на нее действовала  бы постоянная сила тяжести, то давление уменьшалось бы в 10 раз на каждые 20 км высоты. Реальная атмосфера незначительно  отличается от идеального газа примерно до высоты 100 км, а затем давление с высотой убывает медленнее, так как изменяется состав воздуха. Небольшие изменения в описанную  модель вносит и уменьшение силы тяжести  по мере удаления от центра Земли, составляющее вблизи земной поверхности около. 3% на каждые 100 км высоты.

  В отличие от атмосферного давления температура с высотой не понижается непрерывно.. В еще более высоких слоях температура вновь повышается вследствие поглощения атмосферой наиболее коротковолнового ультрафиолетового и рентгеновского излучения Солнца. Под воздействием этого мощного излучения происходит ионизация атмосферы, т.е. молекула газа теряет электрон и приобретает положительный электрический заряд. Такие молекулы становятся положительно заряженными ионами. Благодаря наличию свободных электронов и ионов этот слой атмосферы приобретает свойства электропроводника. Полагают, что температура продолжает повышаться до высот, где разреженная атмосфера переходит в межпланетное пространство. На расстоянии нескольких тысяч километров от поверхности Земли, вероятно, преобладают температуры от 5000° до 10 000° С. Хотя молекулы и атомы имеют очень большие скорости движения, а следовательно, и высокую температуру, этот разреженный газ не является «горячим» в привычном смысле. Из-за мизерного количества молекул на больших высотах их суммарная тепловая энергия весьма невелика.

Таким образом, атмосфера состоит из отдельных  слоев (т.е. серии концентрических  оболочек, или сфер), выделение которых  зависит от того, какое свойство представляет наибольший интерес. На основании  осредненного распределения температур метеорологи разработали схему  строения идеальной «средней атмосферы» .

                Вопросы:

        1 Что такое атмосфера, ее характеристики?

        2 Какова история происхождения Атмосферы?

        3 Размеры Атмосферы?

        4 Какое значении Атмосферы для жизни?

        5 Что особенно для ее строения

                                        

 

                                       2 Тропосфера

   ТРОПОСФЕРА – нижний слой атмосферы, простирающийся до первого термического минимума (т.н. тропопаузы). Верхняя граница тропосферы зависит от географической широты (в тропиках – 18–20 км, в умеренных широтах – ок. 10 км) и времени года. Национальная метеорологическая служба США провела зондирование вблизи Южного полюса и выявила сезонные изменения высоты тропопаузы. В марте тропопауза находится на высоте ок. 7,5 км. С марта до августа или сентября происходит неуклонное охлаждение тропосферы, и ее граница на короткий период в августе или сентябре поднимается приблизительно до высоты 11,5 км. Затем с сентября по декабрь она быстро понижается и достигает своего самого низкого положения – 7,5 км, где и остается до марта, испытывая колебания в пределах всего 0,5 км.

    Именно в тропосфере в основном формируется погода, которая определяет условия существования человека. Большая часть атмосферного водяного пара сосредоточена в тропосфере, и поэтому здесь главным образом и формируются облака, хотя некоторые из них, состоящие из ледяных кристаллов, встречаются и в более высоких слоях. Для тропосферы характерны турбулентность и мощные воздушные течения (ветры) и штормы. В верхней тропосфере существуют сильные воздушные течения строго определенного направления. Турбулентные вихри, подобные небольшим водоворотам, образуются под воздействием трения и динамического взаимодействия между медленно и быстро движущимися воздушными массами. Поскольку в этих высоких слоях облачности обычно нет, такую турбулентность называют «турбулентностью ясного неба».

       Вопросы:

1.Что характерно для Тропосферы?

2. Опишите основные процессы, происходящие  в данном слое?

3. Какая часть атмосферного воздуха  находится в тропосфере?

                             

 

 

 

 

                             3 Стратосфера

   СТРАТОСФЕРА. Вышележащий слой атмосферы часто ошибочно описывают как слой со сравнительно постоянными температурами, где ветры дуют более или менее устойчиво и где метеорологические элементы мало меняются.

Верхняя граница стратосферы (стратопауза) проводится там, где температура  несколько повышается, достигая промежуточного максимума, который нередко сопоставим с температурой приземного слоя воздуха.

На  основе наблюдений, проведенных с  помощью самолетов и шаров-зондов, приспособленных для полетов  на постоянной высоте, в стратосфере  установлены турбулентные возмущения и сильные ветры, дующие в разных направлениях. Как и в тропосфере, отмечаются мощные воздушные вихри, которые особенно опасны для высокоскоростных летательных аппаратов. Сильные  ветры, называемые струйными течениями, дуют в узких зонах вдоль границ умеренных широт, обращенных к полюсам. Однако эти зоны могут смещаться, исчезать и появляться вновь. Струйные течения обычно проникают в тропопаузу и проявляются в верхних слоях  тропосферы, но их скорость быстро уменьшается  с понижением высоты. Возможно, часть  энергии, поступающей в стратосферу (главным образом затрачиваемой  на образование озона), оказывает  воздействие на процессы в тропосфере.

Информация о работе Ламповый усилитель