Автор работы: Пользователь скрыл имя, 14 Мая 2013 в 19:17, реферат
На человека оказывает воздействие главным образом состояние нижних 15–25 км атмосферы, поскольку именно в этом нижнем слое сосредоточена основная масса воздуха. Наука, изучающая атмосферу, называется метеорологией, хотя предметом этой науки являются также погода и ее влияние на человека. Состояние верхних слоев атмосферы, расположенных на высотах от 60 до 300 и даже 1000 км от поверхности Земли, также изменяется. Здесь развиваются сильные ветры, штормы и проявляются такие удивительные электрические явления, как полярные сияния. Многие из перечисленных феноменов связаны с потоками солнечной радиации, космического излучения, а также магнитным полем Земли.
При снятии кардиограммы регистрируемый сигнал, усиливаемый высококачественным электронным усилителем, поступает на вертикальные пластины электронно-лучевой трубки, а на горизонтальные пластины подается линейно изменяющееся напряжение [2] с требуемой скоростью изменения и амплитудой, обеспечивающей развертку электронного луча трубки на полный экран. Это - так называемая развертка осциллографа.
Такой прибор можно использовать для снятия
вектор-кардиограммы,
Усилители необходимо строить с дифференциальным каскадом на входе, чтобы можно было:
использовать
инвертирующий и
подавлять синфазные помехи, обусловленные не только наводками в виде фона (с частотой 50 Гц или кратной), а также помехи, вызываемые электрической активностью скелетных мышц пациента, и т.д.;
реализовать стандартные отведения [1, 3], обеспечивающие измерение разности потенциалов между двумя участками тела, подключением электродов кардиографа к инвертирующему и неинвертирующему входам дифференциального каскада.
Как известно [1, 3], основными стандартными отведениями являются:
I
отведение - электроды на левой
и правой руке подключаются
соответственно к
II
и III отведения - электрод на
левой ноге подключают к
При указанных правилах подключения электродов на экране электронно-лучевой трубки электрокардиограмма появляется направленная кверху, если поданный на инвертирующий вход сигнал превышает по амплитуде сигнал на неинвертирующем входе.
Усилитель, предназначенный для горизонтальных пластин при снятии векторкардиограммы, желательно также реализовать а дифференциальном каскаде. Промежуточные и выходные каскады усилителей целесообразно реализовать на дифференциальных парах, не прибегая к преобразованию двухфазного выходного напряжения в однофазный, так как усилители электронно-лучевых трубок, как правило, строят с двухфазным выходом.
Точность воспроизведения электрокардиограммы определяется линейными и нелинейными искажениями усиливаемых сигналов.
Линейные искажения определяются АЧХ усилителя. В области низких частот они могут быть полностью исключены, если отказаться от использования разделительных RС-цепей между каскадами и блокирующих конденсаторов в цепях задания и стабилизации режимных токов транзисторов. Однако при этом необходимо предусмотреть меры для установки нулевого уровня, от которого отсчитывается амплитуда зубцов и определяется степень смещения сегментов электрокардиограммы. Для установки нулевого уровня, смещение которого в основном определяется отклонением выходного напряжения входного дифференциального каскада, применяют балансировку каскада [4] путем изменения режимных токов входных транзисторов. В электрокардиографах эту операцию производят при помощи корректора.
Из-за температурного дрейфа выходного напряжения дифференциального каскада происходит смещение нулевого уровня, нестабильность которого мешает определению уровня S-Т и создает условия для ошибочного толкования электрокардиограммы [1]. Влияние температурного дрейфа практически можно исключить использованием высокостабильных источников тока, задающих режимные токи коллекторов, а также охватом отрицательной обратной связью соответствующих звеньев усилителя.
При использовании усилителей с непосредственными связями возникает еще проблема согласования по постоянному току каскадов в последовательной цепи усилителя. Эту проблему решают применением схем сдвига потенциальных уровней [4].
Указанные проблемы, вызывающие смещение нулевого уровня, можно исключить применением разделительной RС-цепи, которую подключают к выходу усилителя. Постоянную времени цепи тр = СрR необходимо рассчитать так, чтобы усилитель передавал без заметного искажения сигналы очень низкой частоты - около 0,25 Гц [1].
В области низких частот существенно сказывается действие шумовых сигналов, обусловленных дисперсией процесса рекомбинации-генерации. Это низкочастотные шумы типа 1/f, амплитуда которых заметно возрастает по мере уменьшения частоты.
В электрокардиографах и целом ряде других медицинских аппаратов (например, энцефалографах) приходится усиливать сравнительно низкочастотные сигналы (с частотой, иногда составляющей десятые доли герца), поэтому наряду с полезными сигналами усиливаются низкочастотные шумовые сигналы типа 1/f, амплитуда которых может оказаться сравнимой с амплитудой полезных сигналов. При этом точность воспроизведения сигналов прибором характеризуется шумовым показателем.
µш
= Uвых.m / кр\Uвых, определяемым отношением
амплитуды полезного сигнала Uвых.m
к амплитудному значению шумового сигнала
кр\Uвых, ш\ (|С/вых, ш\ - среднеквадратичное
значение шума, кр - коэффициент, определяющий
амплитудное значение шума). Следовательно,
при разработке или выборе низкочастотного
усилителя для указанных
В усилителях постоянных сигналов прямого усиления проблему уменьшения низкочастотных шумов возможно решить только одним способом - выбором малошумящих транзисторов во входном каскаде, избегая полевых транзисторов, характерной особенностью которых является высокий уровень шумов 1/f. Использование разделительных RС-цепей позволяет еще больше увеличить µш. Практически полностью можно исключить шумы 1/f применением усилителей постоянных сигналов с преобразованием, т.е. МДМ-усилителей, в которых следует использовать модулятор на элементе с низким уровнем шумов 1/f.
Искажения в области высших частот обусловлены инерционностью элементов кардиографа. Считается [1], что пригодный для клинических целей электрокардиограф должен точно передавать сигналы с высокочастотным спектром более 200 Гц. Если регистрирующая система обладает верхней граничной частотой fв, не превышающей 120 Гц, то амплитуда зубцов уменьшается на 30%. Поэтому электрокардиографы с непосредственной записью, где в качестве регистрирующей системы используется инерционный писчик с очень низкой частотой свободных колебаний, практически непригодны для достоверной диагностики на основании формы воспроизводимых зубцов. В электрокардиографах с регистрирующей системой в виде осциллографа без особого труда можно обеспечить воспроизведение сигналов с высокочастотным спектром, составляющим десятки и более килогерц. При этом полностью исключается искажение формы зубцов.
Точность электрокардиограмм зависит и от уровня нелинейных искажений, вносимых аппаратом. Для установления этих искажений электрокардиографы снабжаются потенциометром, при помощи которого контролируется, во-первых, чувствительность усилителя с помощью контрольного милливольта [1] и, во-вторых, уровень нелинейных искажений подачей разнополярных контрольных милливольт. В первом случае подачей контрольного милливольта устанавливается определенный масштаб амплитуды усиливаемого сигнала. По международному стандарту 1 мВ должен обеспечить отклонение 10 мм (в некоторых случаях отступают от этого стандарта). Во втором случае для установления уровня нелинейных искажений изменяют амплитуду контрольного сигнала и проверяют, соответствует ли отклонение на выходе кардиографа установленному значению контрольного сигнала. Такую проверку проводят для отклонения как вверх, так и вниз.
Для уменьшения нелинейных искажений охватывают усилитель отрицательной обратной связью требуемой глубины. При малых нелинейных искажениях их уровень уменьшается пропорционально глубине обратной связи.
Современные электрокардиографы позволяют осуществлять как одноканальную, так и многоканальную запись кардиограммы [3]. Использование цифрового осциллографа позволяет компьютеризировать данный процесс. Для компьютерной обработки электрокардиограмм преобразуют аналоговый сигнал в цифровой, снабдив усилитель аналого-цифровым преобразователем. Дополнив компьютер базой данных по кардиограммам, составленным медицинскими экспертами, можно установить диагноз исследуемого пациента.
усилитель медицинский электрокардиограф электронный
Схема Электрокардиографа.
В настоящее время современные электрокардиографы позволяют осуществлять как одноканальную, так и многоканальную запись кардиограммы [3]. Использование цифрового осциллографа позволяет компьютеризировать данный процесс. Для компьютерной обработки электрокардиограмм преобразуют аналоговый сигнал в цифровой, снабдив усилитель аналого-цифровым преобразователем. Дополнив компьютер базой данных по кардиограммам, составленным медицинскими экспертами, можно установить диагноз исследуемого пациента.
10. Основные вопросы
1.Что такое электронный усилитель?
2 Что Усилитель представляет собой в общем?
3. На какие виды делятся
4. Что такое Электрокардиографы?
5. Для чего они применяются о общем?
6. Для чего применяются в
7. Как работают
8. От чего зависит точность Электрокардиограм?
11.Словарь терминов
Полярное сияние (северное сияние — лат. aurora borealis, южное — aurora australis) — свечение (люминесценция) верхних слоёв атмосферпланет, обладающих магнитосферой, вследствие их взаимодействия с заряженными частицами солнечного ветра.
Со́лнечная радиа́ция — электромагнитное и корпускулярное излучение Солнца. Следует отметить, что данный термин является калькойс англ. Solar radiation («Солнечное излучение»), и в данном случае не означает радиацию в «бытовом» смысле этого слова (ионизирующее излучение).
Косми́ческое излуче́ние — элек
Магнитное поле Земли или геомагнитное поле — магнитное поле, генерируемое внутриземными источниками. Предмет изучения геомагнетизма.
Ва́куум (от лат. vacuum — пустота) — пространство, свободное от вещества. В технике и прикладной физике под вакуумом понимают среду, содержащую газ придавлениях, значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером среды d. Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения λ/d различают низкий ( ), средний ( ) и высоки ) вакуум.
Геоло́гия (от др.-греч. γῆ — «Земля» и от λόγος — «учение») — наука о составе, строении и закономерностях развития Земли[1], других планет Солнечной системы и их естественных спутников.
Диффу́зия (лат. diffusio — распространение, растекание, рассеивание, взаимодействие) — процесс взаимного проникновения молекул одного вещества между молекулами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму[1].
Ультрафиоле́товое излуче́ние (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (10 — 380 нм, 7,9·1014 — 3·1016 Герц).
Электри́ческий заря́д — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.
Фотосинтез (от др.-греч. φῶς — свет и σύνθεσις — соединение, складывание,
связывание, синтез) — процесс образования органических
веществ из углекислого
газа и воды на свету при участии фотосинтетических
пигментов (хлорофилл у растени
Рентге́новское излуче́ние — эл
Парниковый эффект (оранжерейный эффект) атмосферы, свойство атмосферы пропускать солнечную радиацию, но задерживать земное излучение и тем самым способствовать аккумуляции тепла Землёй. Земная атмосфера сравнительно хорошо пропускает коротковолновую солнечную радиацию, которая почти полностью поглощается земной поверхностью, так как альбедо земной поверхности в общем мало. Нагреваясь за счёт поглощения солнечной радиации, земная поверхность становится источником земного, в основном длинноволнового, излучения, прозрачность атмосферы для которого мала и которое почти полностью поглощается в атмосфере. Благодаря П. э. при ясном небе только 10—20% земного излучения может, проникая сквозь атмосферу, уходить в космическое пространство