Автор работы: Пользователь скрыл имя, 23 Октября 2015 в 19:48, контрольная работа
При проведении статистического наблюдения за деятельностью предприятий корпорации получены выборочные данные о среднегодовой стоимости основных производственных фондов и выпуске продукции за год по 32-м предприятиям, выпускающим однотипную продукцию (выборка 10%-ная, механическая).
В статистическом исследовании эти предприятия выступают как единицы выборочной совокупности. Генеральную совокупность образуют все предприятия корпорации. Анализируемые признаки предприятий – Среднегодовая стоимость основных производственных фондов и Выпуск продукции – изучаемые признаки единиц совокупности.
На основе данных табл.9 структура рассеяния значений признака по трем диапазонам (графы 5 и 6) сопоставляется со структурой рассеяния по правилу «трех сигм», справедливому для нормальных и близких к нему распределений:
68,3% значений располагаются в диапазоне ( ),
95,4% значений располагаются в диапазоне ( ),
99,7% значений располагаются в диапазоне ( ).
Если полученная в табл. 9 структура рассеяния хi по 3-м диапазонам незначительно расходится с правилом «трех сигм», можно предположить, что распределение единиц совокупности по данному признаку близко к нормальному.
Расхождение с правилом «трех сигм» может быть существенным. Например, менее 60% значений хi попадают в центральный диапазон ( ) или значительно более 5% значения хi выходит за диапазон ( ). В этих случаях распределение нельзя считать близким к нормальному.
Вывод:
Сравнение данных графы 5 табл.9 с правилом «трех сигм» показывает на их незначительно расхождение, следовательно, распределение единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов можно считать близким к нормальному.
Сравнение данных графы 6 табл.9 с правилом «трех сигм» показывает на незначительное расхождение, следовательно, распределение единиц совокупности по признаку Выпуск продукции можно считать близким к нормальному.
Задача 4. Для ответа на вопросы 4а) – 4в) необходимо воспользоваться табл.8 и сравнить величины показателей для двух признаков.
Для сравнения степени колеблемости значений изучаемых признаков, степени однородности совокупности по этим признакам, надежности их средних значений используются коэффициенты вариации Vs признаков.
Вывод:
Так как Vs для первого признака больше , чем Vs для второго признака, то колеблемость значений первого признака больше колеблемости значений второго признака, совокупность более однородна по первому признаку, среднее значение первого признака является более надежным, чем у второго признака.
Задача 5. Интервальный вариационный ряд распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов представлен в табл.7, а его гистограмма и кумулята – на рис.2.
Возможность отнесения распределения признака «Среднегодовая стоимость основных производственных фондов» к семейству нормальных распределений устанавливается путем анализа формы гистограммы распределения. Анализируются количество вершин в гистограмме, ее асимметричность и выраженность «хвостов», т.е. частоты появления в распределении значений, выходящих за диапазон ( ).
1. При анализе формы гистограммы прежде всего следует оценить распределение вариантов признака по интервалам (группам). Если на гистограмме четко прослеживаются два-три «горба» частот вариантов, это говорит о том, что значения признака концентрируются сразу в нескольких интервалах, что не соответствует нормальному закону распределения.
Если гистограмма имеет одновершинную форму, есть основания предполагать, что выборочная совокупность может иметь характер распределения, близкий к нормальному.
2. Для дальнейшего анализа формы распределения используются описательные параметры выборки – показатели центра распределения ( , Mo, Me) и вариации ( ). Совокупность этих показателей позволяет дать качественную оценку близости эмпирических данных к нормальной форме распределения.
Нормальное распределение является симметричным, и для него выполняются соотношения:
Нарушение этих соотношений свидетельствует о наличии асимметрии распределения. Распределения с небольшой или умеренной асимметрией в большинстве случаев относятся к нормальному типу.
3. Для анализа длины «хвостов» распределения используется правило «трех сигм». Согласно этому правилу в нормальном и близким к нему распределениях крайние значения признака (близкие к хmin и хmax) встречаются много реже (5-7 % всех случаев), чем лежащие в диапазоне ( ). Следовательно, по проценту выхода значений признака за пределы диапазона ( ) можно судить о соответствии длины «хвостов» распределения нормальному закону.
Вывод:
1. Гистограмма является одновершинной.
2. Распределение приблизительно симметрично , так как параметры , Mo, Me отличаются незначительно:
3. “Хвосты” распределения не очень длинны, т.к. согласно графе 5 табл.9 1612, 499072% вариантов лежат за пределами интервала ( )=(483,7497216 ; 577,0718796) млн. руб.
Следовательно, на основании п.п. 1,2,3, можно сделать заключение о близости изучаемого распределения к нормальному.
II. Статистический анализ генеральной совокупности
Задача 1. Рассчитанные в табл.3 генеральные показатели представлены в табл.10.
Описательные статистики генеральной совокупности
Обобщающие статистические показатели совокупности по изучаемым признакам |
Признаки | |
Среднегодовая стоимость основных производственных фондов |
Выпуск продукции | |
Стандартное отклонение , млн. руб. |
120,9374304 |
144,2679699 |
Дисперсия |
14625,86207 |
20813,24713 |
Асимметричность As |
-0,152503649 |
-0,042954448 |
Эксцесс Ek |
-0,344943844 |
-0,205332365 |
Для нормального распределения справедливо равенство
RN=6sN.
В условиях близости распределения единиц генеральной совокупности к нормальному это соотношение используется для прогнозной оценки размаха вариации признака в генеральной совокупности.
Ожидаемый размах вариации признаков RN:
- для первого признака RN =725,6245824,
- для второго признака RN = 865,6078194.
Соотношение между генеральной и выборочной дисперсиями:
- для первого признака 1,03, т.е. расхождение между дисперсиями незначительное;
-для второго признака 1,03, т.е. расхождение между дисперсиями незначительное.
Задача 2. Применение выборочного метода наблюдения связано с измерением степени достоверности статистических характеристик генеральной совокупности, полученных по результатам выборочного наблюдения. Достоверность генеральных параметров зависит от репрезентативности выборки, т.е. от того, насколько полно и адекватно представлены в выборке статистические свойства генеральной совокупности.
Как правило, статистические характеристики выборочной и генеральной совокупностей не совпадают, а отклоняются на некоторую величину ε, которую называют ошибкой выборки (ошибкой репрезентативности). Ошибка выборки – это разность между значением показателя, который был получен по выборке, и генеральным значением этого показателя. Например, разность
определяет ошибку репрезентативности для средней величины признака.
Так как ошибки выборки всегда случайны, вычисляют среднюю и предельную ошибки выборки.
1. Для среднего значения
Для изучаемых признаков средние ошибки выборки даны в табл. 3:
- для признака Среднегодовая стоимость основных производственных фондов
=22,08005289,
- для признака Выпуск продукции
=26,33960714.
2. Предельная ошибка выборки определяет границы, в пределах которых лежит генеральная средняя . Эти границы задают так называемый доверительный интервал генеральной средней – случайную область значений, которая с вероятностью P, близкой к 1, гарантированно содержит значение генеральной средней. Эту вероятность называют доверительной вероятностью или уровнем надежности.
Для уровней надежности P=0,954; P=0,683 оценки предельных ошибок выборки даны в табл. 3 и табл. 4.
Для генеральной средней предельные значения и доверительные интервалы определяются выражениями:
,
Предельные ошибки выборки и ожидаемые границы для генеральных средних представлены в табл. 11.
Таблица 11
Предельные ошибки выборки и ожидаемые границы для генеральных средних
Доверительная вероятность Р |
Коэффи-циент доверия t |
Предельные ошибки выборки, млн. руб. |
Ожидаемые границы для средних | ||
для первого признака |
для второго признака |
для первого признака |
для второго признака | ||
0,683 |
1 |
46,03 |
54,91 |
628,76 |
512,67 |
0,954 |
2 |
22,48 |
26,81 |
616,98 |
598,63 |
Вывод:
Увеличение уровня надежности ведет к расширению ожидаемых границ для генеральных средних.
Задача 3. Рассчитанные в табл.3 значения коэффициентов асимметрии As и эксцесса Ek даны в табл.10.
1.Показатель асимметрии As оценивает смещение ряда распределения влево или вправо по отношению к оси симметрии нормального распределения.
Если асимметрия правосторонняя (As>0) то правая часть эмпирической кривой оказывается длиннее левой, т.е. имеет место неравенство >Me>Mo, что означает преимущественное появление в распределении более высоких значений признака (среднее значение больше серединного Me и модального Mo).
Если асимметрия левосторонняя (As<0), то левая часть эмпирической кривой оказывается длиннее правой и выполняется неравенство <Me<Mo, означающее, что в распределении чаще встречаются более низкие значения признака (среднее значение меньше серединного Me и модального Mo).
Чем больше величина |As|, тем более асимметрично распределение. Оценочная шкала асимметрии:
|As| 0,25 - асимметрия незначительная;
0,25<|As| 0,5 - асимметрия заметная (умеренная);
|As|>0,5 - асимметрия существенная.
Вывод:
Для признака Среднегодовая стоимость основных производственных фондов наблюдается незначительная левосторонняя асимметрия. Следовательно, в распределении преобладают более низкие значения признака.
Для признака Выпуск продукции наблюдается незначительная правосторонняя асимметрия. Следовательно, в распределении преобладают более высокие значения признака.
2.Показатель эксцесса Ek характеризует крутизну кривой распределения - ее заостренность или пологость по сравнению с нормальной кривой.
Как правило, коэффициент эксцесса вычисляется только для симметричных или близких к ним распределений.
Если Ek>0, то вершина кривой распределения располагается выше вершины нормальной кривой, а форма кривой является более островершинной, чем нормальная. Это говорит о скоплении значений признака в центральной зоне ряда распределения, т.е. о преимущественном появлении в данных значений, близких к средней величине.
Если Ek<0, то вершина кривой распределения лежит ниже вершины нормальной кривой, а форма кривой более пологая по сравнению с нормальной. Это означает, что значения признака не концентрируются в центральной части ряда, а рассеяны по всему диапазону от xmax до xmin.
Для нормального распределения Ek=0. Чем больше абсолютная величина |Ek|, тем существеннее распределение отличается от нормального.
При незначительном отклонении Ek от нуля форма кривой эмпирического распределения незначительно отличается от формы нормального распределения.
Вывод:
1. Так как для признака Среднегодовая стоимость основных производственных фондов Ek>0 (Ek<0), то кривая распределения является более островершинной по сравнению с нормальной кривой. При этом Ek незначительно отличается от нуля (Ek=|0,344943844|) Следовательно, по данному признаку форма кривой эмпирического распределения значительно отличается от формы нормального распределения.
2.Так как для признака Выпуск продукции Ek>0 (Ek<0), то кривая распределения является более островершинной по сравнению с нормальной кривой. При этом Ek незначительно отличается от нуля (Ek=|0,205332365|) .Следовательно, по данному признаку форма кривой эмпирического распределения значительно отличается от формы нормального распределения.
III. Экономическая интерпретация результатов статистического исследования предприятий1
Предприятия с резко выделяющимися значениями показателей приведены в табл.2. После их исключения из выборки оставшиеся 30 предприятий являются типичными по значениям изучаемых экономических показателей.
Информация о работе Автоматизированный априорный анализ статистической совокупности в среде MS Excel