Автоматизированный априорный анализ статистической совокупности в среде MS Excel

Автор работы: Пользователь скрыл имя, 23 Октября 2015 в 19:48, контрольная работа

Описание работы

При проведении статистического наблюдения за деятельностью предприятий корпорации получены выборочные данные о среднегодовой стоимости основных производственных фондов и выпуске продукции за год по 32-м предприятиям, выпускающим однотипную продукцию (выборка 10%-ная, механическая).
В статистическом исследовании эти предприятия выступают как единицы выборочной совокупности. Генеральную совокупность образуют все предприятия корпорации. Анализируемые признаки предприятий – Среднегодовая стоимость основных производственных фондов и Выпуск продукции – изучаемые признаки единиц совокупности.

Файлы: 1 файл

otchet_po_statistike.doc

— 662.00 Кб (Скачать файл)

6.1. Экономическая  интерпретация коэффициента регрессии а1

В случае линейного уравнения регрессии =a0+a1x величина коэффициента регрессии a1 показывает, на сколько в среднем (в абсолютном выражении) изменяется значение результативного признака Y при изменении фактора Х на единицу его измерения. Знак при a1 показывает направление этого изменения.

Вывод:

Коэффициент регрессии а1 = 1,0894 показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1 млн руб. значение результативного признака Выпуск продукции увеличивается в среднем на 1,0894 млн руб.


 

 

 

 

6.2. Экономическая  интерпретация коэффициента эластичности.

С целью расширения возможностей экономического анализа явления используется коэффициент эластичности , который измеряется в процентах и показывает, на сколько процентов изменяется в среднем результативный признак при изменении факторного признака на 1%.

Средние значения и приведены в таблице описательных статистик (ЛР-1, Лист 1, табл.3).

Расчет коэффициента эластичности:

=1,0894 * (690/652,17)= 1,153%

 

Вывод:

Значение коэффициента эластичности Кэ=1,1% показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1% значение результативного признака Выпуск продукции увеличивается в среднем на 1,1%.


6.3. Экономическая  интерпретация остаточных величин  εi

Каждый их остатков характеризует отклонение фактического значения yi от теоретического значения , рассчитанного по построенной регрессионной модели и определяющего, какого среднего значения    следует ожидать, когда фактор Х принимает значение xi.

Анализируя остатки, можно сделать ряд практических выводов, касающихся выпуска продукции на рассматриваемых предприятиях отрасли.

Значения остатков i (таблица остатков из диапазона А98:С128) имеют как положительные, так и отрицательные отклонения от ожидаемого в среднем объема выпуска продукции (которые в итоге уравновешиваются, т.е. ).

Экономический интерес представляют наибольшие расхождения между фактическим объемом выпускаемой продукции yi и ожидаемым усредненным объемом .

Вывод:

Согласно таблице остатков максимальное превышение ожидаемого среднего объема выпускаемой  продукции имеют три предприятия - с номерами 6, 20, 27,  а максимальные отрицательные отклонения - три предприятия с номерами 8, 24, 26. Именно эти шесть предприятий подлежат дальнейшему экономическому анализу для выяснения причин наибольших отклонений объема выпускаемой ими продукции от ожидаемого среднего объема и выявления резервов роста производства.


Задача 7. Нахождение наиболее адекватного нелинейного уравнения регрессии с помощью средств инструмента Мастер диаграмм.

Уравнения регрессии и их графики построены для 3-х видов нелинейной зависимости между признаками и представлены на диаграмме 2.1 Рабочего файла.

Уравнения регрессии и соответствующие им индексы детерминации R2 приведены в табл.2.10 (при заполнении данной таблицы коэффициенты уравнений необходимо указывать не в компьютерном формате, а в общепринятой десятичной форме чисел).

Таблица 2.10

Регрессионные модели связи

Вид уравнения

Уравнение регрессии

Индекс

детерминации R2

Полином 2-го порядка

0,0003x2 + 0,6755x +37,186

0,8353

Полином 3-го порядка

3Е-06x3 - 0,0061x2 + 4,9469x -892,56

0,8381

Степенная функция

0,3226x1,1634

0,8371


Выбор наиболее адекватного уравнения регрессии определяется максимальным значением индекса детерминации R2: чем ближе значение R2 к единице, тем более точно регрессионная модель соответствует фактическим данным.

Коэффициенты уравнения могут иметь формат mE-p, тогда они должны быть приведены к виду m*10-p.(Cм. Примечание 1 к п. 5.1.1).

Вывод:

Максимальное значение индекса детерминации R2 = 0,8381. Следовательно, наиболее адекватное исходным данным нелинейное уравнение регрессии имеет вид  3Е-06x3 - 0,0061x2 + 4,9469x -892,56.


 

 

ПРИЛОЖЕНИЕ

Результативные таблицы и графики

 

 

 

 

 
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ 

ФИНАНСОВЫЙ УНИВЕРСИТЕТ 

ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ

Липецкий филиал

Кафедра «Бухгалтерский учет, аудит, статистика»


 

 

 

 

 

 

 

 

 

 

О Т Ч Е Т

о результатах выполнения

компьютерной лабораторной работы №3

 

Автоматизированный априорный анализ статистической совокупности в среде MS Excel

 

Вариант № 5

 

 

 

 

 

 

 

 

                    Выполнил: ст. II курса  гр.3Б3-ЭФ

                                                                                                              Багрянцева Н.А.

                                                                                                              Проверил: Левчегов О.Н.

 

 

 

 

 

Липецк 2015г.

 

1. Постановка задачи статистического  исследования 

В процессе статистического изучения деятельности одного из предприятий получены данные о годовом выпуске продукции (в стоимостном выражении) за шестилетний период, а также данные о выпуске продукции по месяцам за 6-ой год.

Полученные два ряда динамики представлены на Листе 3 Рабочего файла в формате электронных таблиц процессора Excel, годовые данные – в диапазоне ячеек A6:B12, а данные за 6-ой год по месяцам - в диапазоне D6:E19.

Таблица 3.1

В процессе автоматизированного анализа динамики выпуска продукции за шестилетний период необходимо решить следующие статистические задачи.

Задание 1. Расчёт и анализ показателей ряда динамики выпуска продукции за шестилетний период.

Задание 2. Прогноз показателя выпуска продукции на 7-ой год методом экстраполяции.

Задание 3. Выявление тенденции развития изучаемого явления (тренда) по данным о выпуске продукции по месяцам за 6-ой год методами скользящей средней и аналитического выравнивания.

 

 

 

2. Выводы по результатам  выполнения лабораторной работы

Задание 1.

Расчёт и анализ показателей ряда динамики выпуска продукции за шестилетний период.

Выполнение Задания 1 заключается в решении двух задач:

Задача 1.1. Расчет цепных и базисных показателей динамики: абсолютный прирост; темп роста; темп прироста и абсолютное значение 1 % прироста.

Задача 1.2. Расчет средних показателей ряда динамики: средний уровень ряда динамики; средний абсолютный прирост; средний темп роста и средний темп прироста.

Задача 1.1.

Аналитические показатели рядов динамики строятся на основе сравнения двух уровней ряда. Используют два способа сравнения уровней:

1) базисный способ, при котором каждый последующий уровень сравнивается с одним и тем же уровнем, принятым за базу сравнения (то есть база сравнения – постоянная);

2) цепной способ, при котором каждый последующий уровень сравнивается с предыдущим уровнем (то есть база сравнения – переменная).

Соответственно различают:

- базисные показатели, обозначаемые надстрочным индексом б;

- цепные показатели, обозначаемые надстрочным индексом ц.

Общеупотребительные обозначения уровней ряда динамики:

yi – данный (текущий) уровень;

yi-1– предыдущий уровень;

y0 – базисный уровень;

yn – конечный уровень;

К числу основных аналитических показателей рядов динамики, характеризующих изменения уровней ряда за отдельные промежутки времени, относятся: абсолютный прирост, темп роста, темп прироста, абсолютное значение одного процента прироста, которые рассчитываются по следующим формулам:

∆уiб = уi – уо,                                              ∆уiц = уi – уi-1

,                              

Тпрi=Трi-100 (%)                             

Аналитические показатели годовых изменений уровней ряда приведены в табл.3.2.

 

Вывод:

Как показывают данные табл. 3.2, объем реализации произведенной продукции постоянно повышался. В целом за исследуемый период объем реализации произведенной продукции повысился на 1057 млн. руб. (гр.4)  или на 25 % (гр.8). Рост объема реализации продукции носит стабильный характер, что подтверждается постоянно увеличивающимися значениями цепных абсолютных приростов (гр.3) и цепных темпов прироста (гр.7). Характер изменения объемов реализации продукции подтверждается также систематическим изменением величины абсолютного значения 1% прироста (гр.9).


 

Задача 1.2.

В табл.3.2 приведены данные, характеризующие динамику изменения уровней ряда за отдельные периоды времени. Для обобщающей оценки изменений уровней ряда за весь рассматриваемый период времени необходимо рассчитать средние показатели динамики.

В анализе динамики явления в зависимости от вида исходного ряда динамики используются различные средние показатели динамики, характеризующие изменения ряда динамики в целом.

Средний уровень ряда динамики ( ) характеризует типичную величину уровней ряда.

Для интервального ряда динамики с равноотстоящими уровнями средний уровень ряда определяется как простая арифметическая средняя из уровней ряда:

,

где n- число уровней ряда.

Средний абсолютный прирост ( ) является обобщающей характеристикой индивидуальных абсолютных приростов и определяется как простая арифметическая средняя из цепных абсолютных приростов:

         

где n- число уровней ряда.

Средний темп роста ( ) – это обощающая характеристика интенсивности изменения уровней ряда, показывающая во сколько раз изменялись уровни ряда в среднем за единицу времени. Показатель может быть рассчитан по формуле

 

  

где  n – число уровней ряда.

Средний темп прироста ( ) рассчитывают с использованием среднего темпа роста по формуле:

   

Средние показатели ряда динамики выпуска продукции представлены в табл.3.3.

 

  Вывод.

За исследуемый период средний объем реализации произведенной продукции составил 4790,33 млн. руб. Выявлена положительная динамика реализации продукции: ежегодное увеличение объема реализации составляло в среднем 259,40 млн. руб. или 105,5.%.

При среднем абсолютном приросте 259,40 млн. руб. отклонения по отдельным годам незначительны.


 

 

 

 

 

 

Задание 2.

Прогноз показателя выпуска продукции на 7-ой год методом экстраполяции

Применение метода экстраполяции основано на инерционности развития социально-экономических явлений и заключается в предположении о том, что тенденция развития данного явления в будущем не будет претерпевать каких-либо существенных изменений. При этом с целью получения окончательного прогноза всегда следует учитывать все имеющиеся предпосылки и гипотезы дальнейшего развития рассматриваемого социально-экономического явления. Прогноз, сделанный на период экстраполяции (период упреждения), больший 1/3 рассмотренного периода развития явления, не может считаться научно обоснованным (например, по данным за 6 лет научно обоснованным будет прогноз лишь на 2 года вперед).

Выполнение Задания 2 заключается в решении двух задач:

Задача 2.1. Прогнозирование выпуска продукции предприятием на год вперёд с использованием среднего абсолютного прироста и среднего темпа роста.

Задача 2.2. Прогнозирование выпуска продукции предприятием на год вперёд с использованием аналитического выравнивания ряда динамики по прямой, параболе и степенной функции.

Задача 2.1.

Прогнозирование уровня ряда динамики с использованием среднего абсолютного прироста и среднего темпа роста осуществляется соответственно по формулам:

,                                     (1),

                                         (2),

 

где: – прогнозируемый уровень;

        t – период упреждения (число лет, кварталов и т.п.);

Информация о работе Автоматизированный априорный анализ статистической совокупности в среде MS Excel