Автор работы: Пользователь скрыл имя, 23 Октября 2015 в 19:48, контрольная работа
При проведении статистического наблюдения за деятельностью предприятий корпорации получены выборочные данные о среднегодовой стоимости основных производственных фондов и выпуске продукции за год по 32-м предприятиям, выпускающим однотипную продукцию (выборка 10%-ная, механическая).
В статистическом исследовании эти предприятия выступают как единицы выборочной совокупности. Генеральную совокупность образуют все предприятия корпорации. Анализируемые признаки предприятий – Среднегодовая стоимость основных производственных фондов и Выпуск продукции – изучаемые признаки единиц совокупности.
Коэффи-циенты |
Стандартная ошибка |
t-стати-стика |
P-Значение |
Нижние 95% |
Верхние 95% |
Нижние 68,3% |
Верхние 68,3% | |
Y-пересечение |
-99,48840819 |
64,32827205 |
-1,546573614 |
0,133195295 |
-231,2589001 |
32,2820837 |
-165,0289004 |
-33,94791594 |
Переменная X 1 |
1,089355181 |
0,09187519 |
11,85690257 |
1,97601E-12 |
0,901157385 |
1,277552977 |
0,995748668 |
1,182961694 |
Между терминологией инструмента Регрессия и терминами, принятыми в отечественной статистике, имеется ряд расхождений. Согласование терминологии приводится в нижеследующей таблице.
Статистическая интерпретация параметров инструмента Регрессия
Параметр инструмента Регрессия |
Статистический показатель |
Обозначение |
Множественный R |
Линейный коэффициент корреляции |
r |
R– квадрат |
Индекс детерминации |
R2 |
Стандартная ошибка |
Среднее квадратическое отклонение расчетных значений от фактических |
σε |
Наблюдения |
Число наблюдений |
n |
MS |
Дисперсия факторная и остаточная |
|
Y–пересечение |
Свободный член регрессии |
а0 |
Переменная X 1 |
Коэффициент регрессии |
а1 |
Коэффициенты |
Значение коэффициентов уравнения регрессии |
аi |
Нижние 95% и Верхние 95% |
Соответственно нижние и верхние границы доверительных интервалов для коэффициентов регрессии а0 и а1, рассчитанные для уровня надежности Р=0,95. |
– |
Нижние 68,3% и Верхние 68,3% |
Соответственно нижние и верхние границы доверительных интервалов для коэффициентов регрессии а0 и а1, рассчитанные для уровня надежности Р=0,683. |
– |
Предсказанное Y |
Расчетные значения результативного признака |
|
Остатки |
Отклонения расчетных значений от фактических |
εi |
4.1. Построение регрессионной
Инструмент Регрессия на основе исходных данных (xi , yi), производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии , а также вычисление ряда показателей, необходимых для проверки адекватности построенного уравнения исходным (фактическим) данным.
Примечание. В результате работы инструмента Регрессия получены четыре результативные таблицы (начиная с заданной ячейки А75). Эти таблицы выводятся в Рабочий файл без нумерации, поэтому необходимо присвоить им номера табл.2.5 – табл.2.8 в соответствии с их порядком.
Вывод:
Рассчитанные в табл.2.7 (ячейки В91 и В92) коэффициенты а0 и а1 позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения -99,4884+1,0894х.
4.2. В случае линейности функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по построенной модели, используется линейный коэффициент корреляции r.
Значение коэффициента корреляции r приводится в табл.2.5 в ячейке В78 (термин "Множественный R").
Вывод:
Значение коэффициента корреляции r = 0,9132 , что в соответствии с оценочной шкалой Чэддока говорит о весьма тесной степени связи изучаемых признаков.
Задача 5. Анализ адекватности и практической пригодности построенной линейной регрессионной модели.
Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи.
Оценка соответствия построенной регрессионной модели исходным (фактическим) значениям признаков X и Y выполняется в 4 этапа:
Так как коэффициенты уравнения а0 , а1 рассчитывались, исходя из значений признаков только для 30-ти пар (xi , yi), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0 , а1. Поэтому необходимо:
Для анализа коэффициентов а0, а1 линейного уравнения регрессии используется табл.2.7, в которой:
– значения коэффициентов а0, а1 приведены в ячейках В91 и В92 соответственно;
– рассчитанный уровень
– доверительные интервалы
коэффициентов с уровнем
5.1.1. Определение
значимости коэффициентов
Уровень значимости – это величина α=1–Р, где Р – заданный уровень надежности (доверительная вероятность).
Режим работы инструмента Регрессия использует по умолчанию уровень надежности Р=0,95. Для этого уровня надежности уровень значимости равен α = 1 – 0,95 = 0,05. Этот уровень значимости считается заданным.
В инструменте Регрессия надстройки Пакет анализа для каждого из коэффициентов а0 и а1 вычисляется уровень его значимости αр, который указан в результативной таблице (табл.2.7 термин "Р-значение"). Если рассчитанный для коэффициентов а0, а1 уровень значимости αр, меньше заданного уровня значимости α= 0,05, то этот коэффициент признается неслучайным (т.е. типичным для генеральной совокупности), в противном случае – случайным.
Примечания!!!
1 В результативных таблицах инструмента Регрессия уровень значимости коэффициентов уравнения может быть выражен в компьютерном формате mE-p, где m–мантисса, Е– основание системы счисления, p – порядок. Такая запись означает число m*10-p. Например, 1,28Е-09 преобразуется в число 1,28*10-9.
2. В случае, если признается случайным свободный член а0, то уравнение регрессии целесообразно построить заново без свободного члена а0. В этом случае в диалоговом окне Регрессия необходимо задать те же самые параметры за исключением лишь того, что следует активизировать флажок Константа-ноль (это означает, что модель будет строиться при условии а0=0). В лабораторной работе такой шаг не предусмотрен.
Если незначимым (случайным) является коэффициент регрессии а1, то взаимосвязь между признаками X и Y в принципе не может аппроксимироваться линейной моделью.
Вывод:
Для свободного члена а0 уравнения регрессии рассчитанный уровень значимости есть αр = 0,1734. Так как он больше заданного уровня значимости α=0,05, то коэффициент а0 признается случайным.
Для коэффициента регрессии а1 рассчитанный уровень значимости есть αр = 0. Так как он меньше заданного уровня значимости α=0,05, то коэффициент а1 признается не случайным.
5.1.2. Зависимость доверительных интервалов коэффициентов уравнения от заданного уровня надежности
Доверительные интервалы коэффициентов а0, а1 построенного уравнения регрессии при уровнях надежности Р=0,95 и Р=0,683 представлены в табл.2.7, на основе которой формируется табл.2.9.
Таблица 2.9
Границы доверительных интервалов коэффициентов уравнения
Коэффициенты |
Границы доверительных интервалов | |||
Для уровня надежности Р=0,95 |
Для уровня надежности Р=0,683 | |||
нижняя |
верхняя |
нижняя |
верхняя | |
а0 |
-231,2589001 |
32,2820837 |
-165,0289004 |
-33,94791594 |
а1 |
0,901157385 |
1,277552977 |
0,995748668 |
1,182961694 |
Вывод:
В генеральной совокупности предприятий значение коэффициента а0 следует ожидать с надежностью Р=0,95 в пределах-231,2589001 а0 32,2820837, значение коэффициента а1 в пределах 0,901157385 а1 1,277552977 Уменьшение уровня надежности ведет к сужению доверительных интервалов коэффициентов уравнения.
5.2 Определение практической пригодности построенной регрессионной модели.
Практическую пригодность построенной модели можно охарактеризовать по величине линейного коэффициента корреляции r:
Значение индекса детерминации R2 приводится в табл.2.5 в ячейке В79 (термин "R - квадрат").
Вывод:
Значение линейного коэффициента корреляции r и значение индекса детерминации R2 согласно табл. 2.5 равны: r =0,91318826, R2 =0,833912798 Поскольку и , то построенная линейная регрессионная модель связи пригодна для практического использования.
5.3. Общая оценка адекватности регрессионной модели по F-критерию Фишера
Адекватность построенной регрессионной модели фактическим данным (xi, yi) устанавливается по критерию Р.Фишера, оценивающему статистическую значимость (неслучайность) индекса детерминации R2.
Рассчитанная для уравнения регрессии оценка значимости R2 приведена в табл.2.6 (термин "Значимость F") в ячейке F86. Оценка может иметь формат mE-p, тогда она должна быть приведена к виду m*10-p.(Cм. Примечание 1 к п. 5.1.1).
Если она меньше заданного уровня значимости α=0,05, то величина R2 признается неслучайной и, следовательно, построенное уравнение регрессии может быть использовано как модель связи между признаками Х и Y для генеральной совокупности предприятий отрасли.
Вывод:
Рассчитанный уровень значимости αр индекса детерминации R2 есть αр=0. Так как он меньше заданного уровня значимости α=0,05, то значение R2 признается не случайным и модель связи между признаками Х и Y - 99,4884+1,0894х применима для генеральной совокупности предприятий отрасли в целом.
5.4 Оценка погрешности регрессионной модели
Погрешность регрессионной модели можно оценить по величине стандартной ошибки построенного линейного уравнения регрессии . Величина ошибки оценивается как среднее квадратическое отклонение по совокупности отклонений исходных (фактических) значений yi признака Y от его теоретических значений , рассчитанных по построенной модели.
Погрешность регрессионной модели выражается в процентах и рассчитывается как величина .100.
В адекватных моделях погрешность не должна превышать 12%-15%.
Значение приводится в выходной таблице "Регрессионная статистика" (табл.2.5) в ячейке В81 (термин "Стандартная ошибка"), значение – в таблице описательных статистик (ЛР-1, Лист 1, табл.3, столбец 2).
Вывод:
Погрешность линейной регрессионной модели составляет .100=59,8354/652,17.100=9,17%, что подтверждает адекватность построенной модели - 99,4884+1,0894х.
Задача 6. Дать экономическую интерпретацию:
1) коэффициента регрессии а1;
3) остаточных величин i.
2) коэффициента эластичности КЭ;
Информация о работе Автоматизированный априорный анализ статистической совокупности в среде MS Excel