Автоматизированный априорный анализ статистической совокупности в среде MS Excel

Автор работы: Пользователь скрыл имя, 23 Октября 2015 в 19:48, контрольная работа

Описание работы

При проведении статистического наблюдения за деятельностью предприятий корпорации получены выборочные данные о среднегодовой стоимости основных производственных фондов и выпуске продукции за год по 32-м предприятиям, выпускающим однотипную продукцию (выборка 10%-ная, механическая).
В статистическом исследовании эти предприятия выступают как единицы выборочной совокупности. Генеральную совокупность образуют все предприятия корпорации. Анализируемые признаки предприятий – Среднегодовая стоимость основных производственных фондов и Выпуск продукции – изучаемые признаки единиц совокупности.

Файлы: 1 файл

otchet_po_statistike.doc

— 662.00 Кб (Скачать файл)
 

Коэффи-циенты

Стандартная ошибка

t-стати-стика

P-Значение

Нижние 95%

Верхние 95%

Нижние 68,3%

Верхние 68,3%

Y-пересечение

-99,48840819

64,32827205

-1,546573614

0,133195295

-231,2589001

32,2820837

-165,0289004

-33,94791594

Переменная X 1

1,089355181

0,09187519

11,85690257

1,97601E-12

0,901157385

1,277552977

0,995748668

1,182961694


Между терминологией инструмента Регрессия и терминами, принятыми в отечественной статистике, имеется ряд расхождений. Согласование терминологии приводится в нижеследующей таблице.

Статистическая интерпретация параметров инструмента Регрессия

 

                                                                                                                  Таблица 2.8

Параметр инструмента Регрессия

Статистический показатель

Обозначение

Множественный R

Линейный коэффициент корреляции

r

R– квадрат

Индекс детерминации

R2

Стандартная ошибка

Среднее квадратическое отклонение расчетных значений от фактических

σε

Наблюдения

Число наблюдений

n

MS

Дисперсия факторная и остаточная

-

Y–пересечение

Свободный член регрессии

а0

Переменная X 1

Коэффициент регрессии

а1

Коэффициенты

Значение коэффициентов уравнения регрессии

аi

Нижние 95% и Верхние 95%

Соответственно нижние и верхние границы доверительных интервалов для коэффициентов регрессии а0 и а1, рассчитанные для уровня надежности Р=0,95.

Нижние 68,3% и Верхние 68,3%

Соответственно нижние и верхние границы доверительных интервалов для коэффициентов регрессии а0 и а1, рассчитанные для уровня надежности Р=0,683.

Предсказанное Y

Расчетные значения результативного признака

Остатки

Отклонения расчетных значений от фактических

εi


 

4.1. Построение регрессионной модели  заключается в нахождении аналитического  выражения связи между факторным  признаком X и результативным признаком Y.

Инструмент Регрессия на основе исходных данных (xi , yi), производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии , а также вычисление ряда показателей, необходимых для проверки адекватности построенного уравнения исходным (фактическим) данным.

Примечание. В результате работы инструмента Регрессия получены четыре результативные таблицы (начиная с заданной ячейки А75). Эти таблицы выводятся в Рабочий файл без нумерации, поэтому необходимо присвоить им номера табл.2.5 – табл.2.8 в соответствии с их порядком.

Вывод:

Рассчитанные в табл.2.7 (ячейки В91 и В92) коэффициенты а0 и а1 позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения -99,4884+1,0894х.


4.2. В случае линейности функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по построенной модели, используется линейный коэффициент корреляции r.

Значение коэффициента корреляции r приводится в табл.2.5 в ячейке В78 (термин "Множественный R").

 

Вывод:

Значение коэффициента корреляции r = 0,9132 , что в соответствии с оценочной шкалой Чэддока говорит о весьма тесной степени связи изучаемых признаков.


Задача 5. Анализ адекватности и практической пригодности построенной линейной регрессионной модели.

Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи.

Оценка соответствия построенной регрессионной модели исходным (фактическим) значениям признаков X и Y выполняется в 4 этапа:

  1. оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов для заданного уровня надежности;
  2. определение практической пригодности построенной модели на основе оценок линейного коэффициента корреляции  r  и индекса детерминации R2;
  3. проверка значимости уравнения регрессии в целом по F-критерию Фишера;
  4. оценка погрешности регрессионной модели.
    1. Оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов

Так как коэффициенты уравнения а0 , а1 рассчитывались, исходя из значений признаков только для 30-ти пар (xi , yi), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0 , а1. Поэтому необходимо:

      1. проверить значения коэффициентов на неслучайность (т.е. узнать, насколько они типичны для всей генеральной совокупности предприятий отрасли);
      2. определить (с заданной доверительной вероятностью 0,95 и 0,683) пределы, в которых могут находиться значения а0, а1 для генеральной совокупности предприятий.

Для анализа коэффициентов а0, а1 линейного уравнения регрессии используется табл.2.7, в которой:

 – значения коэффициентов а0, а1 приведены в ячейках В91 и В92 соответственно;

 – рассчитанный уровень значимости  коэффициентов уравнения приведен  в ячейках Е91 и Е92;

 – доверительные интервалы  коэффициентов с уровнем надежности Р=0,95 и Р=0,683 указаны в диапазоне ячеек F91:I92.

 

 

5.1.1. Определение  значимости коэффициентов уравнения

Уровень значимости – это величина α=1–Р, где Р – заданный уровень надежности (доверительная вероятность).

Режим работы инструмента Регрессия использует по умолчанию уровень надежности Р=0,95. Для этого уровня надежности уровень значимости равен α = 1 – 0,95 = 0,05. Этот уровень значимости считается заданным.

В инструменте Регрессия надстройки Пакет анализа для каждого из коэффициентов а0 и а1 вычисляется уровень его значимости αр, который указан в результативной таблице (табл.2.7 термин "Р-значение"). Если рассчитанный для коэффициентов а0, а1 уровень значимости αр, меньше заданного уровня значимости α= 0,05, то этот коэффициент признается неслучайным (т.е. типичным для генеральной совокупности), в противном случае – случайным.

Примечания!!!

1 В результативных таблицах инструмента Регрессия уровень значимости коэффициентов уравнения может быть выражен в компьютерном формате mE-p, где m–мантисса, Е– основание системы счисления, p – порядок. Такая запись означает число m*10-p. Например, 1,28Е-09 преобразуется в число 1,28*10-9.

2. В случае, если признается случайным свободный член а0, то уравнение регрессии целесообразно построить заново без свободного члена а0. В этом случае в диалоговом окне Регрессия необходимо задать те же самые параметры за исключением лишь того, что следует активизировать флажок Константа-ноль (это означает, что модель будет строиться при условии а0=0). В лабораторной работе такой шаг не предусмотрен.

Если незначимым (случайным) является коэффициент регрессии а1, то взаимосвязь  между признаками X и Y в принципе не может аппроксимироваться  линейной моделью.

Вывод:

Для свободного члена а0 уравнения регрессии рассчитанный уровень значимости есть αр = 0,1734. Так как он больше заданного уровня значимости α=0,05, то коэффициент а0 признается случайным.

Для коэффициента регрессии  а1  рассчитанный  уровень  значимости есть αр = 0. Так как он меньше заданного уровня значимости α=0,05, то коэффициент а1 признается не случайным.


 

5.1.2. Зависимость доверительных интервалов коэффициентов уравнения от заданного уровня надежности

Доверительные интервалы коэффициентов а0, а1 построенного уравнения регрессии при уровнях надежности Р=0,95 и Р=0,683 представлены в табл.2.7, на основе которой формируется табл.2.9.

Таблица 2.9

Границы доверительных интервалов коэффициентов уравнения

Коэффициенты

Границы доверительных интервалов

Для уровня надежности Р=0,95

Для уровня надежности Р=0,683

нижняя

верхняя

нижняя

верхняя

а0

-231,2589001

32,2820837

-165,0289004

-33,94791594

а1

0,901157385

1,277552977

0,995748668

1,182961694


Вывод:

В  генеральной  совокупности  предприятий  значение  коэффициента  а0 следует ожидать с надежностью Р=0,95 в пределах-231,2589001 а0 32,2820837, значение коэффициента а1 в пределах 0,901157385 а1 1,277552977 Уменьшение уровня надежности ведет к сужению доверительных интервалов коэффициентов уравнения.


5.2 Определение практической пригодности построенной регрессионной модели.

Практическую пригодность построенной модели можно охарактеризовать по величине линейного коэффициента корреляции r:

    • близость к единице свидетельствует о хорошей аппроксимации исходных (фактических) данных с помощью построенной линейной функции связи ;
    • близость к нулю означает, что связь между фактическими данными Х и Y нельзя аппроксимировать как построенной, так и любой другой линейной моделью, и, следовательно, для моделирования связи следует использовать какую-либо подходящую нелинейную модель.
    • Пригодность построенной регрессионной модели для практического использования можно оценить и по величине индекса детерминации R2, показывающего, какая часть общей вариации признака Y объясняется в построенной модели вариацией фактора X.
    • В основе такой оценки лежит равенство R = r (имеющее место для линейных моделей связи), а также шкала Чэддока, устанавливающая качественную характеристику тесноты связи в зависимости от величины r.
    • Согласно шкале Чэддока высокая степень тесноты связи признаков достигается лишь при >0,7, т.е. при >0,7. Для индекса детерминации R2 это означает выполнение неравенства R2 >0,5.
    • При недостаточно тесной связи признаков X, Y (слабой, умеренной, заметной) имеет место неравенство 0,7, а следовательно, и неравенство .
    • С учетом вышесказанного, практическая пригодность построенной модели связи оценивается по величине R2 следующим образом:
    • неравенство R2 >0,5 позволяет считать, что построенная модель пригодна для практического применения, т.к. в ней достигается высокая степень тесноты связи признаков X и Y, при которой более 50% вариации признака Y объясняется влиянием фактора Х;
    • неравенство означает, что построенная модель связи практического значения не имеет ввиду недостаточной тесноты связи между признаками X и Y, при которой менее 50% вариации признака Y объясняется влиянием фактора Х, и, следовательно, фактор Х влияет на вариацию Y в значительно меньшей степени, чем другие (неучтенные в модели) факторы.

Значение индекса детерминации R2 приводится в табл.2.5 в ячейке В79 (термин "R - квадрат").

Вывод:

Значение линейного коэффициента корреляции r и значение индекса детерминации R2 согласно табл. 2.5 равны: r =0,91318826, R2 =0,833912798 Поскольку и , то построенная линейная регрессионная модель связи  пригодна для практического использования.


5.3. Общая оценка  адекватности  регрессионной модели  по F-критерию Фишера

Адекватность построенной регрессионной модели фактическим данным (xi, yi) устанавливается по критерию Р.Фишера, оценивающему статистическую значимость (неслучайность) индекса детерминации R2.

Рассчитанная для уравнения регрессии оценка значимости R2 приведена в табл.2.6 (термин "Значимость F") в ячейке F86. Оценка может иметь формат mE-p, тогда она должна быть приведена к виду m*10-p.(Cм. Примечание 1 к п. 5.1.1).

Если она меньше заданного уровня значимости α=0,05, то величина R2 признается неслучайной и, следовательно, построенное уравнение регрессии может быть использовано как модель связи между признаками Х и Y для генеральной совокупности предприятий отрасли.

Вывод:

Рассчитанный уровень значимости αр индекса детерминации R2 есть αр=0. Так как он  меньше заданного уровня значимости α=0,05, то значение R2 признается не случайным и модель связи между признаками Х и Y - 99,4884+1,0894х применима для генеральной совокупности предприятий отрасли в целом.


 

5.4 Оценка погрешности  регрессионной модели

Погрешность регрессионной модели можно оценить по величине стандартной ошибки построенного линейного уравнения регрессии . Величина ошибки оценивается как среднее квадратическое отклонение по совокупности отклонений исходных (фактических) значений yi признака Y от его теоретических значений , рассчитанных по построенной модели.

Погрешность регрессионной модели выражается в процентах и рассчитывается как величина .100.

В адекватных моделях погрешность не должна превышать 12%-15%.

Значение приводится в выходной таблице "Регрессионная статистика" (табл.2.5) в ячейке В81 (термин "Стандартная ошибка"), значение    – в таблице  описательных  статистик  (ЛР-1, Лист 1, табл.3, столбец 2).

Вывод:

Погрешность линейной регрессионной модели составляет .100=59,8354/652,17.100=9,17%, что подтверждает адекватность построенной модели - 99,4884+1,0894х.


Задача 6. Дать экономическую интерпретацию:

1) коэффициента регрессии а1;

3) остаточных величин  i.

2) коэффициента эластичности КЭ;

Информация о работе Автоматизированный априорный анализ статистической совокупности в среде MS Excel