Автор работы: Пользователь скрыл имя, 01 Июня 2013 в 16:02, шпаргалка
Работа содержит ответы на вопросы по дисциплине "Статистика".
Дискретные (прерывные) – основаны на прерывных вариациях признака. Это такие ряды, где значения вариант имеют значения целых чисел (т. е. не могут принимать дробные значения). Дискретные признаки отличаются друг от друга на некоторую конкретную величину.
Интервальные (непрерывные) – имеют любые, в том числе и дробные количественные выражения и представлены в виде интервалов. Непрерывные признаки могут отличаться один от другого на сколь угодно малую величину.
Вариационные ряды имеют два элемента: варианта (x), частота (f)
Варианта – отдельное значение варьируемого признака, которое он принимает в ряду распределения.
Частота – численность отдельных вариант или каждой группы вариационного ряда. В некоторых случаях применяется частость. Частоты, выраженные в % или долях процента, называются частостями и рссчитываются как отношение локальной частоты варианты к сумме накопленных частот.
Ранжированный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются.
Ряды распределения изображаются в виде: Полигона, Гистограммы, Кумуляты.
Полигон используется для дискретных вариационных рядов.
Для построения полигона распределения по оси абсцисс (X) откладываем количественные значения варьирующего признака — варианты, а по оси ординат — частоты или частости
Интервальные ряды распределения изображают графически в виде гистограммы, кумуляты
Для построения гистограммы по оси абсцисс указывают значения границ интервалов и на их основании строят прямоугольники, высота которых пропорциональна частотам (или частостям).
Кумулята в отличие от полигона строится по накопленным частотам или частостям. Они определяются путем последовательного суммирования частот (частостей) предшествующих интервалов. При этом на оси абсцисс помещают значения признака, а на оси ординат — накопленные частоты или частости.
26. Система исходных
Любое реальное распределение
можно изобразить схематически в
виде кривой, воспроизводящей основные
особенности данного
Элементами распределения являются: варианта, частота
В зависимости от вида кривых, изображающих распределение, выделяют несколько основных типов распределения: одновершинные, многовершинные
К одновершинным относятся те, в которых один, обычно центральный вариант, имеет наибольшую частоту (плотность распределения). Частоты же остальных вариантов убывают по мере удаления от центрального.
Если частоты убывают слева и справа от центрального значения одинаково, то такие распределения называются симметричными.
Если частоты убывают слева и справа от центра распределения с разной скоростью, то такие распределения называют асимметричными.
Многовершинные распределения — это распределения, в которых несколько центров, т. е. такие, у которых несколько максимумов частот.
Для однородных совокупностей, как правило, характерны одновершинные распределения.
Многовершинность распределения свидетельствует о неоднородности изучаемого явления. В этом случае необходимо произвести перегруппировку данных с целью выделения более однородных групп.
Выяснение общего характера
распределения предполагает, наряду
с оценкой его однородности, вычисление
показателей асимметрии и эксце
Кривые распределения бывают: симметричными, асимметричными.
Можно выделить определенную зависимость между изменением частот и изменением значений признаков: частоты изменяются закономерно с изменением варьирующего признака, т. е. с увеличением значения варьирующего признака частоты первоначально увеличиваются, затем, достигнув какой-то максимальной величины в середине ряда, уменьшаются. Такие закономерности изменения частот в вариационных рядах называются закономерностями распределения.
Если вариационный ряд
имеет неравные интервалы, то частоты
в отдельных интервалах не сопоставимы,
т. к. зависят от ширины интервала. В
этих случаях рассчитывают плотность
распределения, которая дает правильное
представление о характере
Как показывают многочисленные статистические
исследования, частоты (частости) эмпирических
распределений за редким исключением
будут отличаться от значений теоретического
распределения. Расхождения между частотами
(частостями) эмпирического и теоретического
распределения могут быть несущественными
и объяснены случайностями выборки и существенными
при несоответствии выбранного и эмпирического
законов распределения.
Для проверки гипотезы о соответствии
эмпирического распределения теоретическому
закону нормального распределения используются
особые статистические показатели-критерии
согласия (или критерии соответствия).
К ним относятся критерии Пирсона, Колмогорова,
Романовского, Ястремского и др.
27)Ряды динамики. Понятие, виды и классификация
Ряд динамики (или временной ряд) – это числовые значения определенного статистического показателя в последовательные моменты или периоды времени (т.е. расположенные в хронологическом порядке).
Числовые значения того или
иного статистического
Ряды динамики, как правило, представляют в виде таблицы или графика, причем по оси абсцисс строится шкала времени t, а по оси ординат – шкала уровней ряда y.
Различают интервальные и моментные ряды динамики.
Динамический интервальный ряд содержит значения показателей за определенные периоды времени. В интервальном ряду уровни можно суммировать, получая объем явления за более длительный период, или так называемые накопленные итоги.
Динамический моментный ряд отражает значения показателей на определенный момент времени (дату времени). В моментных рядах исследователя может интересовать только разность явлений, отражающая изменение уровня ряда между определенными датами, поскольку сумма уровней здесь не имеет реального содержания. Накопленные итоги здесь не рассчитываются.
Важнейшим условием правильного построения динамических рядов является сопоставимость уровней рядов, относящихся к различным периодам. Уровни должны быть представлены в однородных величинах, должна иметь место одинаковая полнота охвата различных частей явления.
Для того, чтобы избежать искажения реальной динамики, в статистическом исследовании проводятся предварительные расчеты (смыкание рядов динамики), которые предшествую статистическому анализу динамических рядов. Под смыканием рядов динамики понимается объединение в один ряд двух и более рядов, уровни которых рассчитаны по разной методологии или не соответствуют территориальным границам и т.д. Смыкание рядов динамики может предполагать также приведение абсолютных уровней рядов динамики к общему основанию, что нивелирует несопоставимость уровней рядов динамики.
Ряды динамики классифицируются по следующим основным признакам:
28.Специальные (аналитические)
Абсолютные приросты (Δy) показывают, на сколько единиц изменился последующий уровень ряда по сравнению с предыдущим (гр.3. — цепные абсолютные приросты) или по сравнению с начальным уровнем (гр.4. — базисные абсолютные приросты). Формулы расчета можно записать следующим образом:
Темпы роста показывают, сколько процентов составляет последующий уровень ряда по сравнению с предыдущим (гр.7 — цепные темпы роста) или по сравнению с начальным уровнем (гр.8 — базисные темпы роста). Формулы расчета можно записать следующим образом:
Темпы прироста показывают, на сколько процентов увеличился уровень отчетного периода по сравнению с предыдущим (гр.9- цепные темпы прироста) или по сравнению с начальным уровнем (гр.10- базисные темпы прироста ). Формулы расчета можно записать следующим образом:
Тпр = Тр - 100% или Тпр= абсолютный прирост / уровень предшествующего периода * 100%
Абсолютное значение 1% прироста (гр. 11) показывает, сколько единиц надо произвести в данном периоде, чтобы уровень предыдущего периода возрос на 1 %.
Определить величину абсолютного значения 1% прироста можно двумя способами:
Абсолютное значение 1% прироста =
29)Методы приведения рядов
приведения рядов динамики к единому основанию
Для этого нужно
Коэффициент опережения (роста или прироста) - это отношение темпа роста (прироста) A к темпу роста (прироста) B.
30. Понятие о тренде (закономерности) в рядах динамики.
9.4. Методы
анализа основной тенденции (
Важной задачей статистики при анализе рядов динамики является определение основной тенденции развития, присущей тому или иному ряду динамики.
Методы анализа основной тенденции в рядах динамики разделяются на две основные группы:
1) сглаживание или механическое выравнивание отдельных членов ряда динамики с использованием фактических значений соседних уровней;
2) выравнивание с применением кривой, проведенной между конкретными уровнями таким образом, чтобы она отображала тенденцию, присущую ряду и одновременно освободила его от незначительных колебаний.
Метод укрупнения интервалов. Если рассматривать уровни экономических показателей за короткие промежутки времени, то в силу влияния различных факторов, действующих в разных направлениях, в рядах динамики наблюдается снижение и повышение этих уровней. Это мешает видеть основную тенденцию развития изучаемого явления. В этом случае для наглядного представления тренда применяется метод укрупнения интервалов, который основан на укрупнении периодов времени, к которым относятся уровни ряда.
Метод простой скользящей средней. Сглаживание ряда динамики с помощью скользящей средней заключается в том, что вычисляется средний уровень из определенного числа первых по порядку уровней ряда, затем средний уровень из такого же числа уровней, начиная со второго, далее - начиная с третьего и т.д.
Каждое звено скользящей средней - это средней уровень за соответствующий период, который относится к середине выбранного периода, если число уровней ряда динамики нечетное. Нахождение скользящей средней по четному числу членов рядов динамики несколько сложнее, так как средняя может быть отнесена только к середине между двумя датами, находящимися в середине интервала сглаживания. Например, средняя, найденная для четырех членов, относится к середине между вторым и третьим, третьим и четвертым уровнями и так далее. Чтобы ликвидировать такой сдвиг, применяют так называемый способ центрирования. Центрирование заключается в нахождении средней из двух смежных скользящих средних для отнесения полученного уровня к определенной дате. При центрировании необходимо находить скользящие суммы, скользящие средние нецентрированные по этим суммам и средние из двух смежных нецентрированных скользящих средних.
Недостаток метода простой скользящей средней состоит в том, что сглаженный ряд динамики сокращается ввиду невозможности получить сглаженные уровни для начала и конца ряда. Этот недостаток устраняется применением метода аналитического выравнивания для анализа основной тенденции.
Аналитическое выравнивание предполагает представление уровней данного ряда динамики в виде функции времени - y=f(t).
После выбора вида уравнения необходимо определить параметры уравнения. Самый распространенный способ определения параметров уравнения - это метод наименьших квадратов. (см тетрадь, последний семинар)