Автор работы: Пользователь скрыл имя, 09 Декабря 2013 в 16:19, шпаргалка
Работа содержит ответы на вопросы для экзамена (зачета) по «Статистике»
Средняя геометрическая: применяется в тех случаях, когда индивидуальные значения признака представляют собой относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики, т.е. характеризует средний коэффициент роста. Она исчисляется извлечением корня степени п из произведения отдельных значений – вариантов признака х: , где п – число вариантов, П – знак перемножения. Широко применяется для определения средних темпов изменения в рядах динамики, а также в рядах распределения. Средняя квадратическая: применяется, когда возникает потребность расчета среднего размера признака, выраженного в квадратных единицах измерения. Средняя квадратическая простая является квадратным корнем из частного от деления суммы квадратов отдельных значений признака на их число: . Средняя квадратическая взвешенная: , где f – веса. Средняя кубическая: применяется, когда возникает потребность расчета среднего размера признака, выраженного в кубических единицах измерения. Средняя кубическая простая: ; средняя кубическая взвешенная: .
Особым видом средних величин являются структурные средние. Они применяются для изучений внутреннего строения и структуры рядов распределения значений признака. К таким показателям относятся мода и медиана. Мода Мо – значение случайной величины, встречающееся с наибольшей вероятностью в дискретном вариационном ряду – вариант, имеющий наибольшую частоту. В интервальных рядах распределения с равными интервалами мода вычисляется по формуле: , где ХМо – нижняя граница модального интервала; iMo – модальный интервал; - частоты в модальном, предыдущем и следующем за модальным интервалах (соответственно). Модальный интервал определяется по наибольшей частоте. Медиана Ме – это вариант, который находится в середине вариационного ряда. Медиана делит ряд на две равные (по числу единиц) части – со значениями признака меньше медианы и со значениями признака больше медианы. Чтобы найти медиану, необходимо отыскать значение признака, которое находится в середине упорядоченного ряда. В ранжированных рядах несгруппированных данных нахождение медианы сводится к отысканию порядкового номера медианы. Номер медианы для нечетного объема вычисляется по формуле: NMe = (n+1)/2. В случае четного объема ряда медиана равна средней из двух вариантов, находящихся в середине ряда. В интервальных рядах распределения медианное значение (поскольку оно делит всю совокупность на две равные по численности части) оказывается в каком-то из интервалов признака х. Этот интервал характерен тем, что его кумулятивная частота (накопленная сумма частот) равна или превышает полусумму всех частот ряда. Значение медианы вычисляется линейной интерполяцией по формуле: , где ХМе – нижняя граница медианного интервала; iMе – медианный интервал; - половина от общего числа наблюдений; - сумма наблюдений, накопленная до начала медианного интервала; - число наблюдений в медианном интервале.
18. Система показателей статистики рынка труда. Статистика спроса и предложения на рабочую силу. Конъюнктура рынка труда. Стоимость и цена рабочей силы. Система показателей, отражающих численность и состав трудовых ресурсов и их распределение по отраслям хозяйства и формам собственности, безработных и экономически неактивное население – баланс трудовых ресурсов, составляемый ежегодно по стране в целом, по республикам в составе РФ, краям и областям (с распределением на городскую и сельскую местность). Он состоит из 2 разделов: 1 ресурсы, во 2 распределение. Трудовые ресурсы – лица обоего пола, которые потенциально могли бы участвовать в производстве товаров и услуг. Численность трудовых ресурсов определяется исходя из численности трудоспособного населения в трудоспособном возрасте и работающих лиц за пределами трудоспособного возраста, границы которого регулирует трудовое законодательство. Численность трудовых ресурсов определяется исходя из численности постоянного населения. Для того чтобы ресурсная и распределительная части баланса соответствовали друг друга численность трудоспособного населения трудоспособного возраста включается численность иностранных работников занятых в экономике на территории страны. Баланс трудовых ресурсов исчислялся по среднегодовым данным и данным на 1 января и 1 июля. Это позволяло улавливать сезонную волну в распределение трудовых ресурсов. Сейчас баланс составляется по среднегодовым данным. Существует рынок труда отдельных профессий, здесь происходят колебания спроса и предложения, которые связаны с НТР и структурной перестройкой экономики. В процессе занятости следует различать полную, неполную, скрытую, сезонную и маятниковую, а так же периодическую. Рынок труда может быть гибким (сокращение продолжительности рабочего времени, сокращение удельного веса занятости ведут к изменению потребности предприятий в количестве и качестве рабочей силы) здесь формируется наемный труд, циркулирующим (труд циркулирует в качестве объекта торговли, продавец товара постоянно перемещается между предприятиями в поиске покупателя как бы циркулируя между ними). Объективная основа оплаты труда – стоимость рабочей силы (денежный эквивалент средств существования, необходимых для жизни). Реально складывающаяся оплата труда работников, формирующееся под влиянием рынка труда и общественных регуляторов оплаты труда – цена рабочей силы. Этот термин заменяют в хозяйственной практике термином ставка заработной платы за единицу рабочего времени. Существует 3 компонента: техническое нормирование труда, тарифное и формы и системы оплаты труда. В практике организаций используются и бестарифное система оплаты труда (по конечному результату). Ее разновидностью является контрактная система или соглашение.
19. Понятие о вариации признака в совокупности. Система показателей вариации. Её применение в анализе финансово-экономической деятельности предприятия.
Вариация – это различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени. К показателям вариации относятся: размах вариации, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, коэффициент вариации. Абсолютные показатели: размах вариации R, представляющий собой разность между максимальным и минимальным значениями признака: .Размах вариации показывает лишь крайние отклонения признака и не отражает отклонений всех вариантов в ряду. При изучении вариации нельзя ограничиваться только определением ее размаха. Для анализа вариации необходим показатель, который отражает все колебания варьирующего признака и дает обобщенную характеристику. Простейшим показателем такого типа является среднее линейное отклонение. Среднее линейное отклонение представляет собой среднюю арифметическую абсолютных значений отклонений отдельных вариантов от их средней арифметической (при этом всегда предполагают, что среднюю вычитают из варианта: ( )). Среднее линейное отклонение для несгруппированных данных: , где п – число членов ряда; для сгруппированных данных: , где - сумма частот вариационного ряда. Дисперсия признака представляет собой средний квадрат отклонений вариантов от их средней величины, она вычисляется по формулам простой и взвешенной дисперсий (в зависимости от исходных данных). Простая дисперсия для несгруппированных данных: ; взвешенная дисперсия для вариационного ряда: . Дисперсия обладает определенными свойствами, два из которых: 1) если все значения признака уменьшить или увеличить на одну и ту же постоянную величину А, то дисперсия от этого не изменится; 2) если все значения признака уменьшить или увеличить в одно и то же число раз (i раз). То дисперсия соответственно уменьшится или увеличится в раз. Используя второе свойство дисперсии, разделив все варианты на величину интервала, можно получить формулу вычисления дисперсии в вариационных рядах с равными интервалами по способу моментов: , где -дисперсия, исчисленная по способу моментов; i – величина интервала; -новые (преобразованные) значения вариантов (А – условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой); - момент второго порядка; - квадрат момента первого порядка. Среднее квадратическое отклонение равно корню квадратному из дисперсии: для несгруппированных данных: , для вариационного ряда: . Среднее квадратическое отклонение – это обобщающая характеристика размеров вариации признака в совокупности; оно показывает, на сколько в среднем отклоняются конкретные варианты от их среднего значения; является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты, поэтому экономически хорошо интерпретируется. Относительные показатели: Коэффициент вариации представляет собой выраженное в процентах отношение среднего квадратического отклонения к средней арифметической: . Также коэффициент вариации используется как характеристика однородности совокупности. Если , то колеблемость незначительная, если , то колеблемость умеренная-средняя, если , то колеблемость значительная, если , то совокупность однородная. Коэффициент осцилляции: . Относительное линейное отклонение: .
20. Понятие валютного рынка. Основные показатели статистики валютного рынка. Статистика курсов валют.
Валютный рынок – совокупность операций по купле – продажи иностранной валюты и предоставления ссуд на конкретных условиях (сумма, обменный курс, период) с выполнением на определенную дату. Международный валютный рынок носит название Форекс. Он характеризуется информативной и спекулятивной функциями. Информативная функция валютного рынка – предоставление экономическим агентам информации о динамике изменения валютных курсов. Все участники валютного рынка делятся на активных (банки и крупные брокерские дома) и пассивных (маркет – юзеры). Благодаря развитию телекоммуникационных технологий ведущие финансовые учреждения мира пользуются услугами валютных бирж напрямую и через посредников. Главными валютами на долю которых приходится основной объем всех операций на рынке Форекс являются сегодня доллар США, евро, японская ена, британский фунт стерлинга. До появления евро большая доля приходилась на немецкую марку. Важным понятием является валютный курс – цена денежной единицы одной страны, выраженная в денежной единице другой. Валютные курсы бывают нескольких видов: прямые котировки, косвенные котировки (обратные), кросс курсы (соотношение меду двумя валютами которые вытекают из их курса к третьей), спот курсы (цена валюты одной страны выраженная валютой другой страны на момент сделки), форвард курсы (курсы валют по срочным сделкам).
21. Виды дисперсий. Правило сложения дисперсий. Расчёт на его основе коэффициента детерминации и эмпирического корреляционного отношения. Их практическое использование.
Вариация признаков обусловлена различными факторами, некоторые из этих факторов можно выделить, если статистическую совокупность разбить на группы по какому-либо признаку. Тогда, наряду с изучением вариации признака по всей совокупности в целом, становится возможным изучить вариацию для каждой из составляющих ее группы, а также и между этими группами. В простейшем случае, когда совокупность расчленена на группы по одному фактору, изучение вариации достигается посредством исчисления и анализа трех видов дисперсий: общей, межгрупповой и внутригрупповой. Общая дисперсия измеряет вариацию признака по всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Она равна среднему квадрату отклонений отдельных значение признака х от общей средней величины и может быть вычислена как простая дисперсия или взвешенная дисперсия . Межгрупповая дисперсия характеризует систематическую вариацию результативного признака, обусловленную влиянием признака-фактора, положенного в основание группировки. Она равна среднему квадрату отклонений групповых (частных) средних от общей средней : , где f – численность единиц в группе. Внутригрупповая (частная) дисперсия отражает случайную вариацию, т.е. часть вариации, обусловленную влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировка. Она равна среднему квадрату отклонений отдельных значений признака внутри группы х от средней арифметической этой группы xi (групповой средней) и может быть исчислена как простая дисперсия или как взвешенная дисперсия . На основании внутригрупповой дисперсии по каждой группе, т.е. на основании можно определить общую среднюю из внутригрупповых дисперсий: . Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповой дисперсий: . Пользуясь правилом сложения дисперсий, можно всегда по двум известным дисперсиям определить третью – неизвестную. Чем больше доля межгрупповой дисперсии в общей дисперсии, тем сильнее влияние группировочного признака на изучаемый признак. Поэтому в статистическом анализе широко используется эмпирический коэффициент детерминации - показатель, представляющий собой долю межгрупповой дисперсии в общей дисперсии результативного признака и характеризующий силу влияния группировочного признака на образование общей вариации: . Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х (остальная часть общей вариации у обуславливается вариацией прочих факторов). При отсутствии связи эмпирический коэффициент детерминации равен нулю, а при функциональной связи – единице. Эмпирическое корреляционное отношение – это корень квадратный из эмпирического коэффициента детерминации: . Он показывает тесноту связи между группировочным и результативным признаками. Эмпирическое корреляционное отношение может принимать значения от 0 до 1. Если связь отсутствует, то корреляционное отношение равно нулю, т.е. все групповые средние будут равны между собой, межгрупповой вариации не будет. Значит, группировочный признак никак не влияет на образование общей вариации. Если связь функциональная, то корреляционное отношение будет равно единице. В этом случае дисперсия групповых средних равна общей дисперсии , т.е. внутригрупповой вариации не будет. Это означает, что группировочный признак целиком определяет вариацию изучаемого результативного признака. Чем значение корреляционного отношения ближе к единице, тем теснее, ближе к функциональной зависимости связь между признаками.
22. Виды цен на товары и услуги. Индексы потребительских цен и покупательной способности рубля.
В эк-ке сущ след система цен и тарифов: розничные цены, тарифы на услуги, оптовые цены предп-я, закупочные, сметные (цены на строительные объекты), цены внешней торговли. Применяемые в статистике индексы цен: 1. Индекс цен с базисными весами (формула Ласпейреса) , средний индекс из индивид ; 2. Индекс цен с весами отчетного периода (формула Паше) , средний индекс из индивидуальных ; 3. Индекс И. Фишера в среднем из индивидуальных ; 4. Индекс переменного состава ; 5. Индекс для пространственно – территориальных сопоставлений (Эджворта – Маршалла) ; 6. Метод станд весов для индексов территориальных сопоставлений (модификация предыдущего индекса) . Структуру розничной цены можно представить как сумму затрат на производство, прибыль (убыток), НДС и торговой наценки. Как известно применяются индексы Ласпейреса (при расчете индекса потребительских цен, цен производителей по данным о ценах на товары представителей), Паше (структура товарооборота или добавленной стоимости или произведенной продукции в текущем периоде, измерение динамики цен компонентов ВВП), агрегатные и средние из индивидуальных, индеек Фишера. Индекс Ласпейреса больше чем Паше, это зависимость известна как эффект Гершенкрона.
23. Метод выборочного наблюдения, его сущность и преимущество. Виды выборки. Определение необходимой численности выборки. Особенности малых выборок.
Выборочное наблюдение – это такое несплошное наблюдение, при котором отбор подлежащих обследованию единиц осуществляется в случайном порядке, отобранная часть изучается, а результаты распространяются на всю исходную совокупность. Наблюдение организуется таким образом, что эта часть отобранных единиц в уменьшенном масштабе представляет всю совокупность. Совокупность, из которой производится отбор, называется генеральной, и все ее обобщающие показатели – генеральными. Совокупность отобранных единиц именуют выборочной совокупностью, и все ее обобщающие показатели – выборочными. Основная задача выборочного наблюдения в экономике состоит в том, чтобы на основе характеристик выборочной совокупности (средней и доли) получить достоверные суждения о показателях средней и доли в генеральной совокупности. При этом возникают ошибки двух видов: регистрации и репрезентативности. Ошибки регистрации могут иметь случайный (непреднамеренный) и систематический (тенденциозный) характер. Случайные ошибки обычно уравновешивают друг друга, поскольку не имеют преимущественного направления в сторону преувеличения или преуменьшения значения изучаемого показателя. Систематические ошибки направлены в одну сторону вследствие преднамеренного нарушения правил отбора. Ошибки репрезентативности присущи только выборочному наблюдению и возникают в силу того, что выборочная совокупность не полностью воспроизводит генеральную. Они представляют собой расхождение между значениями показателей, полученных по выборке, и значениями показателей этих же величин, если бы они были получены при сплошном наблюдении. Для каждого конкретного выборочного наблюдения значение ошибки репрезентативности может быть определено по соответствующим формулам, которые зависят от вида, метода и способа формирования выборочной совокупности. По виду различают индивидуальный, групповой и комбинированный отбор. При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности; при групповом отборе – качественно однородные группы или серии изучаемых единиц; комбинированный отбор предполагает сочетание первого и второго видов. По методу выборки различают повторную и бесповторную выборки. При повторной выборке общая численность единиц генеральной совокупности в процессе выборки остается неизменной. Ту или иную единицу, попавшую в выборку, после регистрации снова возвращают в генеральную совокупность, и она сохраняет равную возможность со всеми прочими единицами при повторном отборе единиц вновь попасть в выборку. При бесповторной выборке единица совокупности, попавшая в выборку, в генеральную совокупность не возвращается и в дальнейшем в выборке не участвует. Т.о., при бесповторной выборке численность единиц генеральной совокупности сокращается в процессе исследования. Способ отбора определяет конкретный механизм или процедуру выборки единиц из генеральной совокупности. На практике выборочных исследований наибольшее распространение получили следующие виды выборки: собственно-случайная, механическая, типическая, серийная, комбинированная. К собственно-случайной выборке относится отбор единиц из всей генеральной совокупности (без предварительного расчленения ее на какие-либо группы) посредством жеребьевки (преимущественно) или какого-либо иного подобного способа, например, с помощью таблицы случайных чисел. Случайный отбор – это отбор не беспорядочный. Принцип случайности предполагает, что на включение или исключение объекта из выборки не может повлиять какой-либо фактор, кроме случая. Механическая выборка состоит в том, что отбор единиц в выборочную совокупность из генеральной, разбитой по нейтральному признаку на равные интервалы (группы), производится таким образом, что из каждой такой группы в выборку отбирается лишь одна единица. Чтобы избежать систематической ошибки, отбираться должна единица, которая находится в середине каждой группы. Для отбора единиц из неоднородной совокупности применяется так называемая типическая выборка, которая используется в тех случаях, когда все единицы генеральной совокупности можно разбить на несколько качественно однородных, однотипных групп по признакам, влияющим на изучаемые показатели. Серийная выборка предполагает случайный отбор из генеральной совокупности не отдельных единиц, а их равновеликих групп (серий) с тем, чтобы в таких группах подвергать наблюдению все без исключения единицы. Комбинированная выборка заключается в объединении различных способов выборки, рассмотренных ранее.