Автор работы: Пользователь скрыл имя, 21 Декабря 2011 в 22:28, курсовая работа
История практического применения средних насчитывает десятки столетий. Основная цель расчета средней состояла в изучении пропорций между величинами. Значимость расчетов средних величин возросла в связи с развитием теории вероятностей и математической статистики. Решение многих теоретических и практических задач было бы невозможно без расчетов средней и оценки колеблемости индивидуальных значений признака.
Введение……………………………………………………………………...3
Глава 1. Понятие о средних величинах…………………………………….5
Глава 2. Виды средних величин…………………………………………….9
Глава 3. Средние величины в экономическом анализе…………………..11
Глава 4. Методические указания и решение типовых задач…………….17
Заключение………………………………………………………………….27
Список использованной литературы……………………………………..29
Содержание
Введение………………………………………………
Глава
1. Понятие о средних величинах………
Глава 2. Виды средних величин…………………………………………….9
Глава
4. Методические указания и решение типовых
задач…………….17
Заключение…………………………………………
Список
использованной литературы……………………………………..29
Введение
История практического применения средних насчитывает десятки столетий. Основная цель расчета средней состояла в изучении пропорций между величинами. Значимость расчетов средних величин возросла в связи с развитием теории вероятностей и математической статистики. Решение многих теоретических и практических задач было бы невозможно без расчетов средней и оценки колеблемости индивидуальных значений признака.
Ученые разных направлений стремились дать определение средней. Например, выдающийся французский математик О.Л.Коши (1789 - 1857) считал, что средней нескольких величин является новая величина, заключающаяся между наименьшей и наибольшей из рассматриваемых величин.
Однако создателем теории средних следует считать бельгийского статистика А. Кетле (1796 - 1874). Им предпринята попытка определить природу средних величин и закономерностей, в них проявляющихся. Согласно Кетле, постоянные причины действуют одинаково (постоянно) на каждое изучаемое явление. Именно они делают эти явления похожими друг на друга, создают общее для всех их закономерности.
Следствием учения А. Кетле об общих и индивидуальных причинах явилось выделения средних величин в качестве основного приема статистического анализа. Он подчеркивал, что статистические средние представляют собой не просто меру математического измерения, а категорию объективной действительности. Типическую, реально существующую среднюю он отождествлял с истинной величиной, отклонения от которой могут быть только случайными.
Ярким выражением изложенного взгляда на среднюю является его теория «среднего человека», т.е. человека среднего роста, веса, силы, среднего объема грудной клетки, емкости легких, средней остроты зрения и обычным цветом лица. Средние характеризуют «истинный» тип человека, все отклонения от этого типа указывают на уродливость или болезнь.
Взгляды А.Кетле получили дальнейшее развитие в работах немецкого статистика В.Лексиса (1837 - 1914).
Другая разновидность идеалистической теории средних основана на философии махизма. Ее основатель английский статистик А. Боули (1869 - 1957). В средних он видел способ наиболее простого описания количественных характеристик явления. Определяя значение средних или, как он выражается, «их функцию», Боули на первый план выдвигает махистский принцип мышлений. Так, он писал, что функция средних ясна: она заключается в том, чтобы выражать сложную группу при помощи немногих простых чисел. Ум не в состоянии сразу охватить величины миллионов статистических данных, они должны быть сгруппированы, упрощены, приведены к средним.
Последователем
А.Кетле был и итальянский
В
данной курсовой работе мы подробно рассмотрим
основные проблемы теории средних величин.
В первой главе выявим понятие средних
величин и общие принципы применения.
Во второй главе рассмотрим виды средних
величин. В третьей рассмотрим использование
средних величин в экономическом анализе.
В четвертой главе рассматриваются методические
указания и решения типовых задач.
Глава
1. Понятие о средних
величинах
Как правило, многие признаки единиц статистических совокупностей различны по своему значению, например, заработная плата рабочих одной профессии какого- либо предприятия не одинакова за один и тот же период времени, различны урожайность сельскохозяйственных культур в хозяйствах района и цены на рынке на одинаковую продукцию и т.д. Поэтому, чтобы определить значение признака, характерное для всей изучаемой совокупности единиц, прибегают к расчету средних величин.
Средней величиной в статистике называется обобщающий показатель, характеризующий типичный уровень явления в конкретных условиях места и времени, отражающий величину варьирующего признака в расчете на единицу качественно однородной совокупности. В экономической практике используется широкий круг показателей, вычисленных в виде средних величин.
Например, обобщающим показателем доходов рабочих акционерного общества (АО) служит средний доход одного рабочего, определяемый отношением фонда заработной платы и выплат социального характера за рассматриваемый период (год, квартал, месяц) к численности рабочих АО. Для лиц с достаточно однородным уровнем доходов, например, работников бюджетной сферы и пенсионеров по старости (исключая имеющих льготы и дополнительные доходы) можно определить типичные доли расходов на покупку предметов питания. Так можно говорить о средней продолжительности рабочего дня, среднем тарифном разряде рабочих, среднем уровне производительности труда и т.д.
Вычисление среднего – один из распространенных приемов обобщения; средний показатель отражает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей1.
Там, где возникает потребность обобщения, расчет таких характеристик приводит к замене множества различных индивидуальных значений признака средним показателем, характеризующим всю совокупность явлений, что позволяет выявить закономерности, присущие массовым общественным явлениям, незаметные в единичных явлениях.
Средняя отражает характерный, типичный, реальный уровень изучаемых явлений, характеризует эти уровни и их изменения во времени и в пространстве.
Средняя – это сводная характеристика закономерностей процесса в тех условиях, в которых он протекает.
Анализ средних выявляет, например, закономерности изменения производительности труда, заработной платы рабочих отдельного предприятия на определенном этапе его экономического развития, изменения климата в конкретном пункте земного шара на основе многолетних наблюдений средней температуры воздуха и др.
Однако
для того, чтобы средний показатель
был действительно
Средние, полученные для неоднородных совокупностей, будут искажать характер изучаемого общественного явления, фальсифицировать его, или будут бессмысленными. Так, если рассчитать средний уровень доходов служащих какого-либо района, то получится фиктивный средний показатель, поскольку для его исчисления использована неоднородная совокупность, включающая в себя служащих предприятий различных типов (государственных, совместных, арендных, акционерных), а также органов государственного управления, сферы науки, культуры, образования и т.п. В таких случаях метод средних используется в сочетании с методом группировок, позволяющим выделить однородные группы, по которым и исчисляются типические групповые средние.
Групповые
средние позволяют избежать «огульных»
средних, обеспечивают сравнение уровней
отдельных групп с общим
Однако нельзя сводить роль средних только к характеристике типических значений признаков в однородных по данному признаку совокупностях. На практике современная статистика использует так называемые системные средние, обобщающие неоднородные явления (характеристика государства, единой народнохозяйственной системы: например, средний национальный доход на душу населения, средняя урожайность зерновых по всех стране, средний реальный доход на душу населения, среднее потребление продуктов питания на душу населения, производительность общественного труда).
В
современных условиях развития рыночных
отношений в экономике средние
служат инструментом изучения объективных
закономерностей социально-
Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц, так как в этом случае согласно закону больших чисел взаимопогашаются случайные, индивидуальные различия между единицами, и они не оказывают существенного влияния на среднее значение, что способствует проявлению основного, существенного, присущего всей массе. Если основываться на среднем из небольшой группы данных, то можно сделать неправильные выводы, поскольку такой средний показатель будет отражать значительное влияние индивидуальных особенностей, т.е. случайных моментов, не характерных для изучаемой совокупности в целом.
Каждая средняя характеризует изучаемую совокупность по какому-либо одному признаку, но для характеристики любой совокупности, описания ее типических черт и качественных особенностей нужна система средних показателей. Поэтому в практике отечественной статистики для изучения социально-экономических явлений, как правило, исчисляется система средних показателей. Так, например, показатели средней заработной платы оцениваются совместно с показателями средней выработки, фондовооруженности и энерговооруженности труда, степенью механизации и автоматизации работ и др.
Средняя
должна вычисляться с учетом экономического
содержания исследуемого показателя.
Поэтому для конкретного
Глава 2. Виды средних
величин
В каждом конкретном случае применяется одна их средних величин: арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т.д.
Средняя арифметическая
Наиболее распространенным видом средних является средняя арифметическая. Она применяется в тех случаях, когда объем варьирующего признака всей совокупности является суммой значений признаков отдельных единиц. Для общественных явлений характерна аддитивность, т.е. суммарность объемов варьирующего признака, этим определяется область применения средней арифметической и объясняется ее распространенность как обобщающего показателя. Так, например: общий фонд заработной платы - это сумма заработных плат всех работников, валовый сбор урожая – сумма произведенной продукции со всей повседневной площади.
Средняя гармоническая