Автор работы: Пользователь скрыл имя, 21 Декабря 2011 в 22:28, курсовая работа
История практического применения средних насчитывает десятки столетий. Основная цель расчета средней состояла в изучении пропорций между величинами. Значимость расчетов средних величин возросла в связи с развитием теории вероятностей и математической статистики. Решение многих теоретических и практических задач было бы невозможно без расчетов средней и оценки колеблемости индивидуальных значений признака.
Введение……………………………………………………………………...3
Глава 1. Понятие о средних величинах…………………………………….5
Глава 2. Виды средних величин…………………………………………….9
Глава 3. Средние величины в экономическом анализе…………………..11
Глава 4. Методические указания и решение типовых задач…………….17
Заключение………………………………………………………………….27
Список использованной литературы……………………………………..29
При расчете средних показателей помимо средней арифметической могут использоваться и другие виды средних. Однако любая средняя величина должна вычисляться так, чтобы при замене ею каждого варианта осредняемого признака не изменялся итоговый, обобщающий, или, как его принято называть определяющий показатель, который связан с осредняемым показателем.
Следовательно, в каждом конкретном случае в зависимости от характера имеющихся данных, существует только одно истинное среднее значение показателя, адекватное свойствам и сущности изучаемого социально-экономического явления.
Средняя геометрическая
Средняя геометрическая применяется в тех случаях, когда индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряжу динамики, т.е. характеризует средний коэффициент роста.
Наиболее широкое применение средняя геометрическая получила для определения средних темпов изменения в рядах динамики, а также в рядах распределения.
Средняя квадратическая и кубическая
В ряде случаев в экономической практике возникает потребность расчета среднего размера признака, выраженного в квадратных или кубических единицах измерения. Тогда применятся средняя квадратическая и средняя кубическая3.
Средняя величина может принимать такие значения, которые не присущи непосредственно ни одному из элементов изучаемой совокупности, кроме того, на практике часто средняя величина для дискретного признака выражается как для непрерывного. Например, среднее число родившихся на каждую тысячу населения в регионе: в регионе имеются несколько населенных пунктов, в каждом из которых складывается собственный уровень рождаемости. Чтобы рассчитать среднюю рождаемость по региону необходимо численность всех родившихся младенцев соотнести с численностью населения и умножить на 1000:
Результат расчета средней величины по данному показателю может выражаться в дробных числах, несмотря на то, что показатель «число родившихся» является целым числом.
Средняя
величина являются равнодействующей всех
факторов, оказывающих влияние на
изучаемое явление. То есть, при расчете
средних величин
Математические приемы, используемые в различных разделах статистики, непосредственно связаны с вычислением средних величин.
Средние в общественных явлениях обладают относительным постоянством, т.е. в течение какого-то определенного промежутка времени однотипные явления характеризуются примерно одинаковыми средними.
Как уже говорилось выше обязательным условием расчета средних величин для исследуемой совокупности является ее однородность. Действительно, допустим, что отдельные элементы совокупности, вследствие подверженности влиянию некоторого случайного фактора, имеют слишком большие (или слишком малые) величины изучаемого признака, существенно отличающиеся от остальных. Такие элементы повлияют на размер средней для данной совокупности, поэтому средняя не будет выражать наиболее характерную для совокупности величину признака.
Если исследуемое явление не является однородным, то его разбивают на группы, содержащие только однородные элементы. Для такого явления рассчитываются сначала средние по группам, которые называются групповые средние, - они будут выражать наиболее типичную величину явления в каждой группе. Затем рассчитывается для всех элементов общая средняя величина, характеризующая явление в целом, - она рассчитывается как средняя из групповых средних, взвешенных по числу элементов совокупности, включенных в каждую группу. На практике, однако, безусловное выполнение данного условия повлекло бы за собой ограничение возможностей статистического анализа общественных процессов. Поэтому, часто средние величины рассчитываются по неоднородным явлениям. Например, при расчете величины средней заработной платы по Тюменской области, когда совместно анализируется заработная плата труда в автономных округах и в южных районах Тюменской области, а затем полученный средний уровень заработной платы труда сопоставляется с соседними сибирскими регионами.
Еще одним важным условием применения средних величин в анализе является достаточное количество единиц в совокупности, по которой рассчитывается среднее значение признака. Достаточность анализируемых единиц обеспечивается корректным определением границ исследуемой совокупности, т.е. закладывается еще на начальном этапе статистического исследования. Данное условие становится решающим при применении выборочного наблюдения, когда необходимо обеспечить репрезентативность выборки.
Определение
максимального и минимального значения
признака в изучаемой совокупности
также является условием применения
средней величины в анализе. В случае
больших отклонений между крайними значениями
и средней, необходимо проверить принадлежность
экстремумов к исследуемой совокупности.
Если сильная изменчивость признака вызвана
случайными, кратковременными факторами,
то, возможно, крайние значения не характерны
для совокупности. Следовательно, их следует
исключить из анализа, т.к. они оказывают
влияние на размер средней величины5.
Глава 4. Методические
указания и решение
типовых задач
Средняя является обобщающей характеристикой совокупности единиц по качественно однородному признаку.
В статистике применяются различные виды средних: арифметическая, гармоническая, квадратическая, геометрическая и структурные средние — мода, медиана. Средние, кроме моды и медианы, исчисляются в двух формах: простой и взвешенной. Выбор формы средней зависит от исходных данных и содержания определяемого показателя. Наибольшее распространение получила средняя арифметическая, как простая, так и взвешенная.
Средняя арифметическая простая равна сумме значений признака, деленной на их число:
S х
х = ¾¾¾¾,
n
где х - значение признака (вариант);
n — число единиц признака.
Средняя арифметическая простая применяется в случаях, когда варианты представлены индивидуально в виде их перечня в любом порядке или ранжированного ряда.
Пример 1. Доходы пяти банков по операциям с ценными бумагами за отчетный период составили: 0,4; 0,7; 0,8; 1,1; 1,2 тыс. руб.
Определить средний доход банка по данной операции.
Решение. Средний доход пяти банков по операциям с ценными бумагами равен
х = 4,2/5 = 0,84 тыс. руб.
Если данные представлены в виде дискретных или интервальных 1 рядов распределения, в которых одинаковые значения признака (х) объединены в группы, имеющие различное число единиц (f), называемое частотой (весом), применяется средняя арифметическая взвешенная: