Автор работы: Пользователь скрыл имя, 08 Января 2013 в 05:53, курсовая работа
Крановое электрооборудование является одним из основных средств комплексной механизации всех отраслей народного хозяйства. Подавляющее большинство грузоподъемных машин изготовляемых отечественной промышленностью, имеет привод основных рабочих механизмов, и поэтому действия этих машин в значительной степени зависит от качественных показателей используемого кранового оборудования.
Перемещение грузов, связанное с грузоподъемными операциями, во всех отраслях народного хозяйства, на транспорте и в строительстве осуществляется разнообразными грузоподъемными машинами.
Введение
1. Краткая характеристика механизма подъёма мос - тового крана.
2. Условия работы и общая техническая характерис - тика электрооборудования механизма подъёма мостового крана.
3. Исходные данные. 9
4. Расчёт статических нагрузок двигателя механизма подъёма мостового крана.
5. Выбор типов электродвигателя и редуктора меха - низма подъёма крана. 2
6. Расчет и выбор ступеней сопротивления в цепях электропривода механизма подъёма мостового крана.
7. Расчёт естественных и искусственных механи - ческих характеристик электродвигателя и механизма подъ-ёма мостового крана.
8. Расчёт переходного процесса электропривода механизма подъёма мостового крана. 10
9. Выбор аппаратуры управления и защиты электро - привода механизма подъёма мостового крана.
10. Расчёт и выбор тормозного устройства. 45
11. Расчет освещения помещения. 48
12. Монтаж троллеев и ТБ при ремонте электро - оборудования механизма подъёма мостового крана. 62
13. Мероприятия по охране окружающей среды. 64
Литература. 66
На крановых установках допускается применять рабочее напряжение до500 В, поэтому крановые механизмы снабжают электрооборудованием на напряжения 220, 380, 500 В переменного тока и 220, 440 В постоянного тока. В схеме управления предусматривают максимальную защиту, отключающую двигатель при перегрузке и коротком замыкании. Нулевая защита исключает самозапуск двигателей при подаче напряжения после перерыва в электроснабжении. Для безопасного обслуживания электрооборудования, находящегося на ферме моста, устанавливают, блокировочные контакты на люке и двери кабины. При открывании люка или двери напряжение с электрооборудования снимается.
При
работе крана происходит постоянное
чередование направления
Мостовой кран установлен в литейном цеху металлургического производства, где наблюдается выделение пыли, поэтому электродвигатель и все электрооборудование мостового крана требует защиты общепромышленного исполнения не ниже IP 53 - защита электрооборудования от попадания пыли, а также полная защита обслуживающего персонала от соприкосновения с токоведущими и вращающимися частями, а также защита электрооборудования от капель воды падающих под углом 600 к вертикали.
Краны литейных цехов работают в непрерывно при интенсивном использовании оборудования, наличием высокой температуры окружающей среды и излучением теплоты от раскаленного или расплавленного металла. Кабина управления краном выполняется теплоизолированной, в ней также оборудуется установка для кондиционирования воздуха. Учёт режима работы крана при проектировании и выборе электрооборудования определяет энергетические показатели и надёжность при эксплуатации крановой установки. Правилами Госгортехнадзора предусматривается четыре режима работы механизмов: лёгкий - Л, средний - С, тяжёлый - Т, весьма тяжёлый - ВТ.
По таблице 1.1 Л2 определяем режим работы крана: Проектируемый мостовой кран работает в среднем режиме с ПВ40.
3 Исходные данные проектирования.
Исходными данными проектирования являются физичес - кие и геометрические параметры механизма подъема мосто -вого крана, а также размеры помещения цеха, в котором рас -положен кран. Исходные данные представлены в таблице 3.1.
Таблица 3.1 - Исходные данные проектирования.
Наименование параметра |
Значение параметра |
1 |
2 |
Грузоподъемность главного крюка |
80 т |
Скорость подъема главного крюка |
4,6 м/мин |
Скорость передвижения крана |
75 м/мин |
Скорость передвижения тележки |
30 м/мин |
Высота подъема главного крюка |
6 м |
Вес главного крюка |
0,8т |
Диаметр барабана лебедки главного крюка |
700 мм |
Вес тележки |
33 т |
Длина перемещения моста |
60 м |
Длина перемещения тележки |
22 м |
КПД главного подъема под нагрузкой |
0,84 |
КПД главного подъема при холостом ходе |
0,42 |
КПД моста |
0,82 |
КПД тележки |
0,79 |
Длина помещения цеха |
62 м |
Ширина помещения цеха |
15,5 м |
Высота помещения цеха |
10 м |
Режим работы крана средний |
С |
Продолжительность включения крана % |
40% |
4 Расчет статических нагрузок двигателя механизма подъема мостового крана
Целью расчета является определение статических нагрузок, приведенных к валу электродвигателя, для выбора мощности электродвигателя механизма подъема мостового крана.
Исходными данными являются технические характеристики мостового крана пункта 3.
4.1 Статическая
мощность на валу
Рст.гр.под
=
где G=m∙g=80∙103∙ 9,8=784000H-вес поднимаемого груза;
m-номинальная грузоподъемность, кг;
g-ускорение свободного падения, м/с2;
G0=m0∙g=0,8∙103∙9,8=7840Н-
m0 - масса пустого захватывающего приспособле -ния, кг;
vн = 4,6м/мин = 0,07 м/с - скорость подъема груза;
hнагр = 0,84 -
КПД под нагрузкой.
Р ст.гр.под .= = 65,98 кВт.
4.2 Мощность
на валу электродвигателя при
подъеме пустого
Р ст.п.гр.=
где hхх=0,42 - КПД механизма при холостом ходе.
Рст.п.гр.= =1,3 кВт.
4.3 Мощность на валу
электродвигателя
Ргр.=(G+G0)*vс*10-3
где vс=vн=0,07 м/с - скорость спуска.
Ргр=(784000+7840)*0,07*10-3=
4.4 Мощность на валу электродвигателя, обусловленная силой трения, кВт:
Ртр.=(
Ртр .= ( ) * (1-0,84) * 0,07 * 10-3 = 8,88 кВт.
Так как выполняется условие Ргр > Ртр, следовательно, электродвигатель работает в режиме тормозного спуска.
4.5 Мощность на валу электродвигателя при тормозном спуске, определяется следующим способом, кВт:
Рт.сп.=(G+G0)*Vс*(2-
Рст.сп.=(784000+7840)*0,07*(2- )*10-3=44,8 кВт.
4.6 Мощность на валу электродвигателя во время спуска порожнего захватывающего приспособления, кВт:
Рс.ст.о.=G0∙Vс∙ ( -2) ∙10-3 (4.6)
Рс.ст.о.=7840∙0,07( -2) ∙10-3=0,2 кВт.
4.7 После
определения статических
4.7.1 Время подъема груза на высоту Н:
tр1= =85,7 сек.
где Н-высота подъема груза, м.
4.7.2 Время перемещения груза на расстояние L:
t01= =48 сек.
4.7.3 Время для спуска груза:
tр2= =85,7 сек.
4.7.4 Время на зацепление груза и его отцепления:
t02= t 04=200 сек.
4.7.5 Время подъема порожнего крюка:
tр3= =85,7 сек.
4.7.6 Время необходимое для возврата крана к месту подъема нового груза:
t03= =48 сек.
4.7.7 Время спуска порожнего крюка:
tр4= =39,2 сек.
Вычертим нагрузочный график механизма подъема для рабочего цикла:
Рисунок 4.1- Нагрузочный график механизма подъема для рабочего цикла.
Таблица 4.1- Рабочий цикл механизма подъема.
Участки |
Подъем груза |
Па -уза |
Спуск груза |
Па - уза |
Подъем крюка |
Па - уза |
Спуск крюка |
Па - уза |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
Рс, (кВт) |
65,98 |
0 |
44,8 |
0 |
1,3 |
0 |
0,2 |
0 |
t, (cек) |
85,7 |
48 |
85,7 |
200 |
85,7 |
48 |
85,7 |
200 |
4.7.8 Суммарное время работы электродвигателя:
S tр=tр1+ tр2+ tр3+ tр4=4*85,7 = 342,8 сек.
4.7.9 Суммарное время пауз:
S t0=t01+t02+t03+t04=48+48+200+
4.8 Действительная продолжительность включения, %:
ПВд=
ПВд= ∙100%=40,8%.
4.9 Эквивалентная мощность за суммарное время работы электродвигателя, кВт:
Рэкв=
Рэкв=
4.10 Эквивалентную
мощность пересчитываем на
Рэн=Рэкв
∙
Рэн=39,8∙ =40,2 кВт.
4.11 Определяем
расчетную мощность
Рдв=
где Кз = 1,2 - коэффициент запаса;
hред = 0,95 - КПД редуктора.
Рдв= =50,7 кВт.
4.12 Угловая
скорость лебедки в рад/с и
частота вращения лебедки в
об/мин, определяется
wл=
где D - диаметр барабана лебедки, м.
wл = = 0,2 рад/с.
nл =
nл = = 2 об/мин.
Полученные
значение мощности электродвигателя в
пункте (4.11) и значение стандартной
продолжительности включения ПВ
5 Выбор типов электродвигателя и редуктора механизма подъема мостового крана
Целью расчета является выбор приводного электродви - гателя по справочнику и проверка его по перегрузочной способности и по условиям осуществимости пуска, а также выбор редуктора для механизма подъема мостового крана.
Исходными данными являются исходные данные проекти-рования пункта 3 и результаты расчетов пункта 4.
5.1 Выберем электродвигатель из следующих условий:
Рном
³ Рдв
Рном ³ 50,7 кВт
Таблица 5.1 - Технические данные асинхронного электро - двигателя с фазным ротором типа МТН512-6
Параметры двигателя |
Значение параметра |
1 |
2 |
Мощность, Рн |
55 кВт |
Частота вращения, nн |
970 об/мин |
Ток статора, I1 |
99 А |
Коэффициент мощности, Соs j |
0,76 |
КПД, hн |
89 % |
Ток ротора, I2 |
86 А |
Напряжение ротора, U2 |
340 В |
Максимальный момент, Мm |
1630 Нм |
Маховый момент, GD2 |
4,10 кг∙м2 |
Напряжение, U |
380 В |
Частота, f |
50 Гц |
Продолжительность включения, ПВст |
40 % |