Автор работы: Пользователь скрыл имя, 27 Марта 2013 в 21:42, курс лекций
Условно можно выделить следующие основные направления биотехнологии: биотехнология пищевых продуктов, препаратов для сельского хозяйства, препаратов и продуктов для промышленного и бытового использования, лекарственных препаратов, средств диагностики и реактивов, биотехнология также включает выщелачивание и концентрирование металлов, защиту окружающей среды от загрязнения, деградацию токсических отходов и увеличение добычи нефти.
Основные направления биотехнологии .................................................... 3
Объекты биотехнологии и их
биотехнологические функции ...................................................................
24
Основные принципы промышленного
осуществления биотехнологических процессов ......................................
42
Производство биотехнологических продуктов ........................................ 59
Биотехнология и экологические проблемы .............................................. 96
Литература ................................................................................................... 105
Каллусные культуры пищевых макрофитных водорослей, например ламинариевых, могут в перспективе использоваться для получения белка, непосредственно идущего в пищу и в пищевые добавки, а также в корма сельскохозяйственным животным. Суспензионные культуры макрофитных водорослей открывают в перспективе возможности использования их в качестве трофического звена в марикультуре. Они могли бы также выступать в качестве партнера в искусственно создаваемых растительных ассоциациях, участники которых обладают полезными свойствами. Выделяемые клетками культуры экзометаболиты, характерные для исходного вида водоросли, будут составлять основу трофического обмена при удачном подборе партнеров в растительной ассоциации или комплексе марикультуры. Необходимо отметить, что при отсутствии токсического и антагонистического действия выделяемых соединений в естественных условиях существуют разнообразные и многочисленные природные ассоциации, например повсеместно встречающиеся комплексы водорослей и бактерий.
РАСТЕНИЯ
Водный папоротник азолла ценится как органическое азотное удобрение, так как растет в тесном симбиозе с сине-зеленой водорослью анабена. Это позволяет симбиотическому организму анабена-азолла накапливать много азота в вегетативной массе. Анабену-азоллу выращивают на рисовых полях перед посевом риса, что позволяет снижать количество вносимых минеральных удобрений.
Представители семейства рясковых (Lemnaceae) - самые мелкие и простые по строению цветковые растения, величина которых редко превышает 1 см. Рясковые - свободноживущие водные плавающие растения. Вегетативное тело напоминает лист или слоевище низших растений, поэтому до начала 18 века ряску относили к слоевищным растениям.
В литературе встречается несколько названий тела рясковых. Самое удачное - листец. Тело рясковых - особая структура, не дифференцированная на листья и стебель (листоветвь), представляющая зеленую пластинку, иногда выпуклую с нижней стороны.
Рясковые (Lemna minor, L. trisulca, Wolfia, Spirodela polyrhiza) служат кормом для животных, для уток и других водоплавающих птиц, рыб, ондатры. Их используют и в свежем, и в сухом виде как ценный белковый корм для свиней и домашней птицы. Рясковые содержат много протеина (до 45 % от сухой массы). 45% углеводов, 5% жиров и остальное - клетчатка и т.д. Они высоко продуктивны, неприхотливы в культуре, хорошо очищают воду и обогащают её кислородом. Это делает рясковые ценным объектом для морфогенетических, физиологических и биохимических исследований.
3-лекция
ОСНОВНЫЕ ПРИНЦИПЫ ПРОМЫШЛЕННОГО ОСУЩЕСТВЛЕНИЯ БИОТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ
План лекции:
Центральная проблема биотехнологии - интенсификация биопроцессов как за счет повышения потенциала биологических агентов и их систем, так и за счет усовершенствования оборудования, применения биокатализаторов (иммобилизованных ферментов и клеток) в промышленности, аналитической химии, медицине.
В основе промышленного использования достижений биологии лежит техника создания рекомбинантных молекул ДНК. Конструирование нужных генов позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми свойствами. В частности, возможно управление процессом фиксации атмосферного азота и перенос соответствующих генов из клеток микроорганизмов в геном растительной клетки.
В качестве источников сырья
для биотехнологии все большее
значение будут приобретать
Одной из бурно развивающихся отраслей биотехнологии считается технология микробного синтеза ценных для человека веществ. По прогнозам, дальнейшее развитие этой отрасли повлечет за собой перераспределение ролей растениеводства и животноводства с одной стороны, и микробного синтеза - с другой, в формировании продовольственной базы человечества.
Не менее важным аспектом современной микробиологической технологии является изучения участия микроорганизмов в биосферных процессах и направленная регуляция их жизнедеятельности с целью решения проблемы охраны окружающей среды от техногенных, сельскохозяйственных и бытовых загрязнений.
С этой проблемой тесно связаны исследования по выявлению роли микроорганизмов в плодородии почв (гумусообразовании и пополнении запасов биологического азота), борьбе с вредителями и болезнями сельскохозяйственных культур, утилизации пестицидов и др. химических соединений в почве. Имеющиеся в этой области знания свидетельствуют о том, что изменение стратегии хозяйственной деятельности человека от химизации к биологизации земледелия оправдывается как с экономической, так и с экологической точек зрения. В данном направлении перед биотехнологией может быть поставлена цель регенерации ландшафтов.
Ведутся работы по созданию биополимеров, которые будут способны заменить современные пластмассы. Эти биополимеры имеют существенное преимущество перед традиционными материалами, так как нетоксичны и подвержены биодеградации, то есть легко разлагаются после их использования, не загрязняя окружающую среду.
Биотехнологии, основанные на достижениях микробиологии, наиболее экономически эффективны при комплексном их применении и создании безотходных производств, не нарушающих экологического равновесия. Их развитие позволит заменить многие огромные заводы химической промышленности экологически чистыми компактными производствами.
Важным и перспективным направлением биотехнологии является разработка способов получения экологически чистой энергии. Получение биогаза и этанола были рассмотрены выше, но есть и принципиально новые экспериментальные подходы в этом направлении. Одним из них является получение фотоводорода. Если из хлоропластов выделить мембраны, содержащие фотосистему 2, то на свету происходит фотолиз воды - разложение на кислород и водород. Моделирование процессов фотосинтеза, происходящих в хлоропластах, позволило бы запасать энергию Солнца в ценном топливе - водороде. Преимущества такого способа получения энергии очевидны:
• наличие избытка субстрата, воды;
• нелимитируемый источник энергии - Солнце;
• продукт (водород) можно хранить, не загрязняя атмосферу;
• водород имеет высокую теплотворную способность (29 ккал/г) по сравнению с углеводородами (3.5 ккал/г);
• процесс идет при нормальной температуре без образования токсических промжуточных продуктов;
• процесс циклический, так как при потреблении водорода регенерируется субстрат - вода.
Другой механизм превращения энергии у галофитных бактерий Halobacterium halobium, которые используют энергию солнца, поглощаемую пурпурным пигментом бактериородопсином, находящимся в мембране клетки. Поглощение света вызывает химические и физические изменения в мембране, приводящие к направленному транспорту протонов водорода с одной стороны мембраны на другую и созданию электрохимического градиента. Следствием этого является синтез аденозинтрифосфорной кислоты. H.halobium можно культивировать в мелких водоемов с высоким содержанием NaCl и других минеральных солей. Из 10 литров бактериальной культуры можно получить 0,5 грамма мембран, содержащих до 100000 молекул пигмента. Пигмент можно фиксировать на подложках, обладающих физическими и химическими свойствами для транспорта протонов.
СТАДИИ БИОТЕХНОЛОГИЧЕСКОГО ПРОИЗВОДСТВА
Большое разнообразие биотехнологических процессов, нашедших промышленное применение, приводит к необходимости рассмотреть общие, наиболее важные проблемы, возникающие при создании любого биотехнологического производства. Процессы промышленной биотехнологии разделяют на 2 большие группы: производство биомассы и получение продуктов метаболизма. Однако такая классификация не отражает наиболее существенных с технологической точки зрения аспектов промышленных биотехнологических процессов. В этом плане необходимо рассматривать стадии биотехнологического производства, их сходство и различие в зависимости от конечной цели биотехнологического процесса. В общем виде система биотехнологического производства продуктов микробного синтеза представлена на рис. 1.
Существует 5 стадий биотехнологического производства.
Две начальные стадии включают подготовку сырья и биологически действующего начала. В процессах инженерной энзимологии они обычно состоят из приготовления раствора субстрата с заданными свойствами (рН, температура, концентрация) и подготовки партии ферментного препарата данного типа, ферментного или иммобилизованного. При осуществлении микробиологического синтеза необходимы стадии приготовления питательной среды и поддержания чистой культуры, которая могла бы постоянно или по мере необходимости использоваться в процессе. Поддержание чистой культуры штамма-продуцента - главная задача любого микробиологического производства, поскольку высокоактивный, не претерпевший нежелательных изменений штамм может служить гарантией получения целевого продукта с заданными свойствами.
Третья стадия - стадия ферментации, на которой происходит образование целевого продукта. На этой стадии идет микробиологическое превращение компонентов питательной среды сначала в биомассу, затем, если это необходимо, в целевой метаболит.
На четвертом этапе из культуральной жидкости выделяют и очищают целевые продукты. Для промышленных микробиологических процессов характерно, как правило, образование очень разбавленных растворов и суспензий, содержащих, помимо целевого, большое количество других веществ. При этом приходится разделять смеси веществ очень близкой природы, находящихся в растворе в сравнимых концентрациях, весьма лабильных, легко подвергающихся термической деструкции.
Рис. 1. Система биотехнологического производства
Заключительная
стадия биотехнологического
ТЕХНОЛОГИЯ ПРИГОТОВЛЕНИЯ ПИТАТЕЛЬНЫХ СРЕД ДЛЯ БИОСИНТЕЗА
Основу питательных
сред для культивирования
Отделения приготовления питательной среды представляет собой цех, оборудованный емкостями для хранения жидких и твердых веществ, средствами их транспортировки и аппаратами с перемешивающими устройствами для приготовления растворов, суспензий или эмульсий. При этом питательные соли хранятся обычно в твердом виде, а приготовление их смеси с заданным соотношением компонентов производится в аппарате с мешалкой, куда подаются твердые компоненты в необходимом количестве и далее происходит их растворение. Иногда соединяются и перемешиваются заранее приготовленные растворы. Жидкие и твердые источники углерода обычно вводят в уже готовую питательную среду непосредственно перед ферментацией, так как это устраняет опасность заражения посторонней микрофлорой, вероятность которого возрастает при хранении готовой питательной смеси.
При непрерывном культивировании в производстве микробного белка углеводороды и растворы солей вводят в ферментер раздельно по индивидуальным линиям, а смешение и эмульгирование нерастворимых в воде n-алканов происходит уже в самом биореакторе. При культивировании бактерий на метане последний постоянно барботируют в аппарат через специальные устройства.
При периодической ферментации в начале процесса инокулят (засевная доза микроорганизмов) вносится в уже готовую питательную среду, содержащую все компоненты. Поэтому источники углерода вводят непосредственно перед засевом или отдельные компоненты среды вводят по мере потребления их культурой, поддерживая в ферментере некоторую оптимальную их концентрацию, которая на разных этапах ферментации может меняться по определенному закону.
Важнейшим элементом приготовления питательных сред является соблюдение требований асептики. Это либо создание заданного значения рН, обеспечивающего подавление посторонних микроорганизмов, либо полная стерилизация всех подаваемых потоков и самого биореактора.
Для стерилизации газовых потоков (в первую очередь воздуха) используют процесс фильтрации через специальные волокнистые фильтры с последовательно расположенными фильтрующими элементами. Фильтрующий материал периодически стерилизуется подачей острого пара в отключенный фильтр через заданные промежутки времени. Жидкостные потоки стерилизуют различными методами, из которых практический интерес представляют термический, радиационный, фильтрационный и отчасти химический.