Автор работы: Пользователь скрыл имя, 27 Марта 2013 в 21:42, курс лекций
Условно можно выделить следующие основные направления биотехнологии: биотехнология пищевых продуктов, препаратов для сельского хозяйства, препаратов и продуктов для промышленного и бытового использования, лекарственных препаратов, средств диагностики и реактивов, биотехнология также включает выщелачивание и концентрирование металлов, защиту окружающей среды от загрязнения, деградацию токсических отходов и увеличение добычи нефти.
Основные направления биотехнологии .................................................... 3
Объекты биотехнологии и их
биотехнологические функции ...................................................................
24
Основные принципы промышленного
осуществления биотехнологических процессов ......................................
42
Производство биотехнологических продуктов ........................................ 59
Биотехнология и экологические проблемы .............................................. 96
Литература ................................................................................................... 105
Термический - самый распространенный, при температурах порядка 120-150оС.
Радиационный - g-излучение, применяется редко из-за трудностей создания и эксплуатации мощных источников этого излучения.
В отдельных случаях применяют химические стерилизующие агенты (вещества с ярко выраженным асептическим действием). Основная проблема в этом случае - необходимость устранения стерилизующего агента из питательной среды после гибели микрофлоры до внесения инокулята. Химические антисептики должны быть не только высокоэффективны, но и легко разлагаемы при изменении условий после завершения стерилизации. К числу лучших относится пропиолактон, обладающий сильным бактерицидным действием и легко гидролизуемый в молочную кислоту.
Мало распространен и метод фильтрации, что объясняется аппаратными трудностями. Метод основан на способности полупроницаемых мембран с крупными порами пропускать жидкую фазу и концентрировать клетки микроорганизмов. В принципе этот метод является идеальным для стерилизации термически неустойчивых жидких и газовых средств, поскольку может осуществляться при низкой температуре и требует лишь градиента давления по разные стороны мембраны. Основная трудность - наличие термостойких мембран, способных выдерживать многократную стерилизацию их самих. В настоящее время эта проблема решается путем применения термостойких полимеров в производстве мембран.
В заключение заметим, что ряд субстратов не требует стерилизации, так как они сами обладают асептическим действием; сюда относят метанол, этанол, концентрированная уксусная кислота и др. В этом случае ограничиваются стерилизацией прочих элементов питательной среды.
ПОДДЕРЖАНИЕ ЧИСТОЙ КУЛЬТУРЫ И ПОЛУЧЕНИЕ
ЗАСЕВНОЙ ДОЗЫ
В технологическом процессе используются полезные свойства штамма, следовательно, необходимо сохранять и, если возможно, улучшать его производственные качества. Поэтому в биотехнологическом производстве имеется отделение чистой культуры, в задачей которого является постоянное и надежное воспроизведение полезных свойств продуцента, найденных или достигнутых в свое время в ходе лабораторных исследований. Такое отделение проводит лабораторные операции по контролю и сохранению чистой культуры, а также маломасштабное культивирование для постоянной передачи штамма на стадию ферментации.
Фактически это
При периодическом процессе культивирования (при производстве метаболитов) в отделении чистой культуры готовят засевную дозу клеток для каждой из операций основного производства. При непрерывном производстве кормового белка этого не требуется, однако для повышения качества продукта предпочитают время от времени вводить клетки штамма-продуцента из отделения чистой культуры. Для этого в отделении имеется ферментационная часть, где производится выращивание достаточно крупных партий микроорганизма продуцента.
Посевные дозы выращиваются последовательно в колбах и бутылях на 10-20 литров, находящихся на качалках или просто в термостатируемом помещении, и далее в последовательности ферментеров объемом (по необходимости) 10, 100, 500 и 1000 литров, в которых осуществляется перемешивание, аэрация и термостатирование культуральной жидкости с клетками.
Отделение чистой культуры должно иметь достаточно большую коллекцию штаммов продуцентов, так как возможны временные переходы с одного штамма на другой, вызванные различными причинами. Например, сезонные изменения температуры частично компенсируются подбором достаточно продуктивных термотолерантных штаммов. Кроме того, микробиологическая промышленность зачастую вынуждена использовать в качестве компонентов питательных сред отходы сельского хозяйства и пищевой промышленности (меласса, кукурузный экстракт), что ведет к сезонным изменениям сырья и предполагает адаптацию продуцента к особенностям среды. Все это делает роль микробиологической службы производства достаточно высокой.
ФЕРМЕНТАЦИЯ
Стадия ферментации - центральная среди этапов промышленного производства. Под ферментацией понимают всю совокупность последовательных операций от внесения в заранее приготовленную и термостатированную среду инокулята до завершения процессов роста, биосинтеза или биотрансформации.
Ферментация проходит в специальных емкостях, называемых ферментерами или биореакторами. Конструкция биореактора приведена на рис. 3. Основными элементами ферментера являются двойные стенки, промежуток между которыми заполняется охлаждающей или нагревающей жидкостью, входные отверстия для газовых и жидких потоков, система контроля за составом питательной среды и условиями внутри реактора.
Рис. 3. Устройство ферментера
Поскольку в промышленной биотехнологии выделяют 2 типа процессов - накопление биомассы и накопление ценных веществ, возникающих в ходе роста и последующего развития культуры, то меняется и характер построения производства во времени. Биомасса одноклеточных выращивается непрерывным способом в аппаратах хемостатного типа, а все процессы второй группы осуществляются периодически, когда в одном и том же аппарате в производственном цикле протекают все необходимые фазы развития клеток и биосинтеза. Процессы двух рассматриваемых типов отличаются по требованиям к степени асептики, что связано с их объёмами - белок одноклеточных выпускается миллионами тонн сухого вещества, а выпуск продуктов второго типа составляет, как максимум, тысячи или десятки тысяч тонн. Поэтому в производстве белковых веществ ограничиваются достаточно высокой, но не 100% степенью асептики, обеспечивая последнюю подбором режима культивирования, подходящего для продуцента, но неблагоприятного для возможных примесных штаммов.
Технологическое оформление процессов промышленной биотехнологии в значительной мере определяется отношением микроорганизма-продуцента к кислороду. При использовании аэробных культур ферментационное оборудование и нормы технологического режима подбираются таким образом, чтобы массообмен (перенос кислорода из газовой в жидкую фазу) обеспечивал поступление кислорода к клеткам в количествах, необходимых и оптимальных для данной культуры в данной фазе роста.
Промышленное использование факультативных анаэробов не ставит задачи абсолютного исключения кислорода из среды, поэтому процессы этого типа (брожение) технологически проще аэробных. В начальной фазе этих процессов требуется лишь удалить кислород из газовой фазы над культуральной жидкостью, что может быть достигнуто введением инертного газа или просто вытеснением воздуха углекислотой, выделяемой клетками при метаболизме.
Технологическое оформление строго анаэробных процессов сложнее, чем для процессов брожения, так как в этом случае необходимо полностью исключить возможность попадания кислорода в газовую, а оттуда и в жидкую среду.
Вопросы термостатирования ферментационного процесса (подвода или отвода тепла в ходе ферментации) являются очень острыми в целом ряде производств биотехнологии. В аэробных условиях микробиологический синтез протекает со значительным тепловыделением, что вызывает необходимость отвода тепла из аппаратов большого объема (сотни и тысячи кубометров). Технологические требования к скорости теплоотвода очень жесткие из-за узкого температурного оптимума роста культуры (2-3up>оС). Наиболее приемлимый на практике способ теплоотвода - охлаждение водой через змеевики, рубашки и др. устройства - осложняется небольшой разностью температур между содержимым биореактора (32-34оС для дрожжей Candida) и охлаждающей водой (20оС), температура которой в жаркое время года еще выше. Поэтому в реакторе создается развитая поверхность газообмена, увеличивается скорость движения жидкостей и т.д.
Важно также поддерживать определенный состав питательной среды. В непрерывных процессах биосинтеза задача технолога сводится к поддержанию концентрации всех питательных веществ (и кислорода) и дозированному введению кислоты или щелочи для рН-статирования системы на заданном уровне. Простейшим вариантом управления стадией ферментации в периодическом режиме является изменение концентраций компонентов среды и её рН, а также введение необходимых добавок по заранее разработанной программе, реализуемой технологом в каждом цикле ферментации. Этот способ относительно прост и легко поддается автоматизации.
Во многих случаях необходимо возможно полно исчерпывать компоненты питательной среды, чтобы они не попадали на последующие стадии переработки. Эта необходимость может быть вызвана рядом причин:
ОБЩИЕ ПРИНЦИПЫ РАЗДЕЛЕНИЯ ВЕЩЕСТВ
Продукты микробного синтеза поступают из биореактора в виде водных суспензий или растворов, при этом характерно невысокое содержание основного компонента и наличие многих примесных веществ.
В большинстве промышленных производств на первом этапе переработки культуральной жидкости производят отделение массы продуцента от жидкой фазы – сепарацию. Жидкость далее также подвергается переработке, если содержит метаболиты, представляющие практическую ценность. В производствах, где целевым продуктом являются клетки как источник белка, культуральная жидкость подвергается лишь очистке, позволяющей использовать водную фазу многократно и снизить образование сточных вод.
Технологические приемы, используемые для отделения клеток от среды зависят от природы продуцента. Например, сахаромицеты (хлебопекарные дрожжи) имеют относительно большие клетки и способны флотироваться, поэтому после сгущения биомассы флотацией их отделяют на обычных барабанных вакуум-фильтрах. В дальнейшем биомассу, снятую с фильтра, подвергают прессованию и получают продукт с высоким содержанием живых клеток, имеющих высокую хлебопекарную активность.
Дрожжи же рода Candida, служащие источником кормового белка плохо флотируются и фильтруются. Поэтому дрожжи, растущие на углеводородах, а также бактерии-продуценты белка на основе метана и метанола, на первом этапе сепарируются, причем в несколько ступеней. Оставшаяся вода удаляется путем выпаривания, а все компоненты жидкой фазы остаются в конечном продукте. К аналогичному приему прибегают и при производстве бактериальных энтомопатогенных препаратов и удобрений. Конечный продукт удается получить в активной форме лишь в принципе отказавшись от выделения его из культуральной жидкости: содержимое реактора выпаривают и сушат в условиях, обеспечивающих жизнеспособность конечного продукта. Неутилизированные компоненты культуральной жидкости могут отразиться на способности продукта к хранению.
При выделении и очистке метаболитов биомасса, если она не содержит заметных количеств целевого продукта, осаждается добавлением извести или других твердых компонентов, увлекающих клетки или мицелий на дно - физическое осаждение.
Отделение твердой фазы (мелкодисперсный клеточный материал, внутриклеточные биополимеры возможно и методом фильтрации). Так как фильтруемая суспензия склонная к гелеобразованию, то производительность фильтров быстро падает. Предотвратить это можно добавлением в смесь или на фильтрующую ткань размолотых вулканических пород, содержащих оксиды кремния и алюминия, тогда осадки приобретают пористую структуру.
Некоторые виды биомассы отделяют центрифугированием. Осаждение взвешенных частиц происходит под действием центробежной силы. После разделения образуется 2 фракции: биомасса (твердая) и культуральная жидкость.
Культуральная жидкость перерабатывается путем экстракции, ионообмена, кристаллизации или с помощью микро- и ультрафильтрации через полимерные мембраны со специально подобранным размером пор.
Для выделения и очистки продуктов, находящихся внутри клеток продуцента (например интерферонов, гормонов) вводится стадия разрушения клеточных оболочек (дезинтеграция биомассы); обычно для этого применяются механические, химические или комбинированные методы.
К физическим методам
дезинтеграции относятся
Химические и химико-
Освобождение от растворимых веществ производят несколькими способами:
1. Осаждение – физическое (нагревание, охлаждение, разбавление, концентрирование) или химическое (с помощью органических и неорганических веществ).
Осаждение органическими растворителями основано на снижении диэлектрической постоянной среды. Устойчивость белковых растворов обусловлена наличием гидратного слоя у молекулы. Если его разрушить, белки осаждаются. Для этого молекулы добавляемых веществ должны быть более гидрофильны, чем молекулы белков. В качестве осадителей используют этанол, метанол, ацетон, изопропанол. При разных количествах растворителя и разных значения рН осаждаются разные фракции. Пример: 50% этанол осаждает 80% протеазы и 3-5% амилазы, 70% спирт осаждает 98% амилазы.