Теория механизмов и машин

Автор работы: Пользователь скрыл имя, 13 Апреля 2014 в 13:14, курс лекций

Описание работы

Вопросы, рассматриваемые на лекции. ТММ - научная основа новых машин и механизмов. Исторический очерк развития ТММ. Цели и задачи курса. Разделы ТММ. Основные виды звеньев. Кинематические пары. Степень подвижности механизмов. Структурная классификация механизмов. Условия существования кривошипа. Модификация механизмов при замене пар.

Файлы: 1 файл

ЛЕКЦИИ ПО ТММ.doc

— 2.37 Мб (Скачать файл)

Некоторые основные понятия.

Кулачковый механизм (рис.5) представляет собой механизм с высшей кинематической парой. Ведущим звеном механизма является кулачок 1, профиль которого определяет закон движения ведомого звена- толкателя 2.

 

Рис.5

 

Различают толкатели остроконечные, роликовые, грибовидные и плоские (тарельчатые) (рис.6).

Рис.6

 

По виду движения ведомого звена различают кулачковые механизмы с поступательно движущимся толкателем и с качающимся толкателем.

Рассмотрим кулачковый механизм (рис.5) с центральным поступательно движущимся толкателем. Линия движения толкателя в таком механизме проходит через ось вращения кулачка. Различают элементы кулачка:

1.Окружность основной шайбы, очерченная  наименьшим радиусом r0.

2.Профиль удаления- участок с возрастающими радиусами-векторами. Угол поворота кулачка, соответствующий прохождению этого кулачка под острием толкателя, называется углом удаления и обозначается уд. Толкатель за это время поднимается из крайнего нижнего положения в крайнее верхнее положение и проходит путь h, называемый ходом толкателя.

3.Профиль верхнего останова- участок  , очерченный максимальным радиусом rmax. Ему соответствует угол поворота кулачка в.о, называемый угол верхнего останова. Толкатель в это время остается неподвижным в крайнем верхнем положении.

4.Профиль приближения- участок    с уменьшающимися радиусами-векторами. При прохождении под острием толкателя этого участка, толкатель опускается из крайнего верхнего в крайнее нижнее положение, а кулачок поворачивается на угол приближения пр.

5.Профиль нижнего останова- участок  , очерченный наименьшим радиусом r0 . Во время прохождения этого участка под острием толкателя последний остается неподвижным в крайнем нижнем положении. Угол поворота кулачка, соответствующий этому участку профиля, называется углом нижнего останова и обозначается н.о.

6.Профиль кулачка, очерченный кривыми  , и называется рабочим профилем, а сумма углов поворота кулачка, соответствующих этому профилю, называется рабочим углом, то есть: раб= уд+ в.о+ пр

Кинематический анализ кулачковых механизмов (рис.7).

 

Рис.7

 

Лекция 5. Кинематический анализ зубчатых передач.

 

Вопросы, рассматриваемые на лекции. Классификация зубчатых передач. Геометрические элементы зубчатого колеса. Зубчатые механизмы с неподвижными осями. Планетарные механизмы. Дифференциальные механизмы.

Некоторые основные понятия.

Передаточное отношение отдельной зубчатой пары равно: ,

где z1 и z2- числа зубьев ведущего и ведомого колес.

В случае червячной передачи (рис.8) через z1 обозначают число заходов червяка, а через z2- число зубьев червячного колеса.

Рис.8

 

Передаточное отношение зубчатой пары с внешним зацеплением (рис.9) имеет знак «минус», так как ведущее и ведомое колеса вращаются в противоположных направлениях, передаточное отношение пары с внутренним зацеплением (рис.10) - знак «плюс».

 Рис.9                                                                       Рис.10

 

В случае реечного зацепления (рис.11) вращательное движение колеса с угловой скоростью w преобразуется в поступательное движение рейки со скоростью .

,

где rн - радиус начальной окружности колеса;

m- модуль зацепления.

При повороте колеса на угол, равный 360о, рейка продвигается на величину шага .

Рис.11     Рис.12

 

На рис.12 показана коническая зубчатая пара.

К зубчатым механизмам с подвижными осями относятся планетарные зубчатые механизмы (с одной степенью свободы) и дифференциальные зубчатые механизмы (с двумя степенями свободы). На рис.13 представлена одна из возможных схем дифференциального механизма.

Рис.13

 

Соотношение между угловыми скоростями зубчатых колес и водилом дифференциального механизма определяется формулой:

.

 

(4)


Индекс «н» указывает, что в данном случае водило является неподвижным звеном, 1-ведущее звено, 3-ведомое звено.

Если колесо z3 закрепить неподвижно, то мы получим планетарный механизм. Передаточное отношение от зубчатого колеса z1 к водилу  планетарного механизма определяется формулой:

.

(5)


Для подсчета кинетической энергии механизма, выбора подшипников при проектировании планетарных механизмов необходимо знать угловую скорость сателлитов. Поскольку скорость ведущего звена z1 задана и скорость водила может быть определена с использованием формулы (5), для определения угловой скорости сателлита необходимо знать передаточное отношение от центрального колеса z1 к сателлиту или от водила к сателлиту:

.

(6)


Разделив числитель и знаменатель правой части выражения (6) на wн, получим:

.

Тогда можно определить угловую скорость сателлита:

.

При определении передаточного отношения редуктора необходимо разделить его механизм на отдельные ступени. Прежде всего, следует выделить планетарную ступень, имея в виду, что в планетарную ступень входят водило, сателлиты и два центральных зубчатых колеса.

Планетарные и дифференциальные механизмы практически почти никогда не делаются с одним сателлитом, обычно сателлитов, входящих в зацепление с одними и теми же центральными колесами, несколько. Это делается для уменьшения сил инерции и разгрузки зубчатых колес механизма, уменьшения модуля зацепления и общих габаритов редуктора.

При определении числа степеней свободы следует иметь в виду, что все добавочные сателлиты (больше одного) являются пассивными связями.

 

Лекция 6. Синтез эвольвентного зубчатого зацепления.

 

Вопросы, рассматриваемые на лекции. Образование и свойства эвольвенты. Методы обработки эвольвентных профилей зубьев. Основная теорема зацепления. Элементы зацепления. Рабочий участок профиля зуба. Коэффициент зацепления. Интерференция профиля зубьев.

Некоторые основные понятия. При изготовлении зубчатых колес методом обкатки инструмент изготавливается либо в виде зубчатого колеса с эвольвентным профилем зубьев (долбяк), либо в виде зубчатой рейки с прямолинейными профилями зубьев (гребенка).

При нарезании зубчатого колеса его заготовке и инструменту сообщают то относительное движение, которое имели бы они, если бы находились в зацеплении. Инструмент имеет дополнительное возвратно-поступательное движение вдоль оси колеса, во время осуществления которого режущая кромка инструмента вырезает на заготовке эвольвентный профиль зуба.

На рис.14 показана схема нарезания зубьев методом обкатки с помощью гребенки. Заготовка I вращается с угловой скоростью и движется поступательно со скоростью V=rд . Гребенка II совершает  движение в направлении, перпендикулярном плоскости заготовки (плоскости чертежа). Профиль зубьев на колесе получается, как огибающая к ряду последовательных положений зубьев гребенки на заготовке.

Для того, чтобы нарезать нулевое колесо, необходимо гребенку установить так, чтобы модульная прямая (проходит посередине зубьев рейки) была удалена от центра заготовки на расстояние радиуса делительной окружности rд, то есть делительная окружность заготовки обкатывалась без скольжения по модульной прямой. Тогда на нарезаемом колесе получаются зубья, толщина которых по делительной окружности  будет равна ширине впадины.

Так как шаг гребенки одинаков по всем линиям, параллельным основанию, то при нарезании зубьев делительную окружность можно катить не только по модульной прямой, но и по любой прямой, параллельной ей. При этом на заготовке будут нарезаны зубья с правильным очертанием боковых профилей по эвольвенте, однако вид зубьев будет другой.

Пусть мы отодвинули рейку от центра заготовки колеса на величину а. Тогда при нарезании зубьев делительная окружность будет катиться без скольжения по линии 1-1. На рис.14 видно, что в этом случае толщина зуба гребенки на начальной прямой будет меньше ширины впадины. Значит, на нарезаемом колесе по делительной окружности толщина зуба будет больше, чем ширина впадины (так как при обкатке зуб рейки образует на заготовке впадину).

Зубчатые колеса, нарезанные методом обкатки с удалением гребенки от центра заготовки, по сравнению с нулевой установкой, при которой делительная окружность касается модульной прямой, называются положительными колесами, а дополнительное удаление а гребенки- положительным смещением (сдвигом).

 

Рис.14

 

Можно задать гребенке отрицательное смещение (сдвиг), то есть приблизить гребенку к центру заготовки по сравнению с нулевой установкой. Тогда также на заготовке будет нарезано целое число зубьев с очертанием их бокового профиля по эвольвенте. Однако в этом случае толщина зуба по делительной окружности будет меньше ширины впадины. Такое колесо называется отрицательным.

Отношение смещения к модулю называется коэффициентом смещения (относительным сдвигом) и обозначается: .

Изготовление положительных и отрицательных колес (так называемых корригированных) производится с целью увеличения прочности зубьев (устранение подреза профиля малого колеса), уменьшения наибольших значений удельного скольжения, уменьшения габаритов передачи (применение колес с малым числом зубьев), получения заданного межцентрового расстояния. Корригированные колеса могут быть введены в сцепление между собой и с нулевыми колесами.

Встречаются следующие зацепления. Нулевая передача: одно колесо положительное, а другое отрицательное с равным по величине сдвигом, либо оба нулевых колеса. Положительная передача: одно нулевое колесо, а другое положительное, либо положительное колесо с отрицательным, но сумма сдвига положительна. Остальные комбинации встречаются редко.

Геометрические параметры зубчатых колес:

- высота головки зубьев 

- высота ножки зубьев 

Рис.15

 

- диаметры начальных окружностей:

- диаметры выступов зубьев:

 

 

 

Рис.16

- диаметры впадин зубьев:

Межцентровое расстояние:

Шаг по начальной окружности:

Подсчитав все размеры элементов зацепления и приняв угол зацепления , можно вычертить внешнее эвольвентное зубчатое зацепление. На зубьях непосредственно находящихся в зацеплении необходимо отметить рабочие участки зубьев, а также построить диаграмму работы зубьев. Для этого к практической линии зацепления восстанавливаем перпендикуляры, строим прямоугольник произвольной ширины и от каждой стороны откладываем отрезки равные шагу по основной окружности: . Заштриховываем зоны работы зубьев.

Коэффициент перекрытия (зацепления):

Анализ значения коэффициента перекрытия (демонстрируется на примере):

- таким образом, 40% времени в  зацеплении находится одна пара  зубьев.

- таким образом, 60% времени в  зацеплении находятся две пары зубьев.

 

Лекция 7. Синтез многозвенных зубчатых механизмов.

 

Вопросы, рассматриваемые на лекции. Синтез многозвенных зубчатых передач с неподвижными осями. Планетарные коробки скоростей. Синтез многозвенных зубчатых передач с подвижными осями.

Некоторые основные понятия. Для получения больших передаточных отношений применяют соединения зубчатых колес.

Последовательное соединение. На промежуточных валах имеется по два колеса (рис.17). Общее передаточное отношение iобщ последовательного соединения равно произведению отдельных зубчатых пар, то есть

 

Рис.17

 

,

где  .

Через числа зубьев колес общее передаточное отношение последовательного соединения выражается следующим образом:

Здесь в числителе- произведение чисел зубьев ведомых колес, а в знаменателе– ведущих колес. Знак общего передаточного отношения зависит от числа k пар внешнего зацепления: при четном числе k- «плюс», при нечетном числе k- «минус».

Рядовое соединение колес. На промежуточных валах расположено по одному колесу (рис.18). Общее передаточное отношение рядового соединения равно:

,

то есть передаточное отношение равно обратному отношению чисел зубьев крайних колес и не зависит от числа зубьев промежуточных колес, которые называются паразитными.

Рис.18

 

Рядовое соединение применяют для соединения валов, отстоящих на большое расстояние друг от друга, либо для изменения направления вращения ведомого вала.

Для ступенчатого изменения передаточного отношения применяют коробки скоростей (рис.19). При перемещении блока шестерен, посаженного на скользящую шпонку, вдоль вала I в зацепление вступают попарно колеса z1-z2, z3-z4 или z5-z6. В зависимости от этого могут быть получены следующие передаточные отношения:

.

Рис.19

Величина общего передаточного отношения может быть определена опытным путем. Для этого мелом наносят отметки на ведущий и ведомый валы, а также на корпус. Повернув ведущий вал на несколько оборотов, подсчитывают число оборотов ведомого вала. Например, если при повороте ведущего вала на 6 оборотов, ведомый вал сделал 7 оборотов, то общее передаточное отношение .

 

 

 

 

Лекция 8. Механизмы передач с гибкими звеньями.

Информация о работе Теория механизмов и машин