Энзимология как учение о ферментах. Простые и сложные ферменты

Автор работы: Пользователь скрыл имя, 05 Мая 2015 в 19:44, лекция

Описание работы

Метаболизм, или обмен веществ, представляет собой процесс, в котором, с одной стороны, из простых веществ строятся более сложные, а с другой — происходит распад веществ до конечных продуктов обмена, что сопровождается выделением энергии.

Файлы: 1 файл

biohimiya_lekcii.doc

— 3.90 Мб (Скачать файл)

 

д) субстратное фосфорилирование на уровне сукцинил-КоА, в ходе которого энергия, освобождающаяся при гидролизе тиоэфирной связи, запасается в форме молекулы ГТФ. В отличие от окислительного фосфорилирования, этот процесс протекает без образования электрохимического потенциала митохондриальной мембраны (рис. 7.7, реакция 6).

 

е) дегидрирование сукцината с образованием фумарата и молекулы ФАДН2 (рис. 7.7, реакция 7). Фермент сукцинатдегидрогеназа прочно связан с внутренней мембраной митохондрии.

 

ж) гидратация фумарата, в результате чего в молекуле продукта реакции появляется легко окисляемая гидроксильная группа (рис. 7.7, реакция 8).

 

з) дегидрирование малата, приводящее к образованию оксалоацетата и третьей молекулы НАДН (рис.7.7, реакция 9). Образующийся в реакции оксалоацетат может вновь использоваться в реакции конденсации с очередной молекулой ацетил-КоА (рис. 7.6, реакция 1). Поэтому данный процесс носит циклический характер.

 

7.4.3. Таким  образом, в результате описанных  реакций подвергается полному  окислению ацетильный остаток  СН3-СО-. Количество молекул ацетил-КоА, превращаемых в митохондриях  в единицу времени, зависит от  концентрации оксалоацетата. Основные  пути увеличения концентрации оксалоацетата в митохондриях (соответствующие реакции будут рассмотрены позднее):

а) карбоксилирование пирувата – присоединение к пирувату молекулы СО2 с затратой энергии АТФ;

б) дезаминирование или трансаминирование аспартата – отщепление аминогруппы с образованием на её месте кетогруппы.

 

 

7.4.4. Некоторые  метаболиты цикла Кребса могут  использоваться для синтеза структурных  блоков для построения сложных  молекул. Так, оксалоацетат может  превращаться в аминокислоту  аспартат, а α–кетоглутарат – в аминокислоту глутамат. Сукцинил-КоА принимает участие в синтезе гема – простетической группы гемоглобина. Таким образом, реакции цикла Кребса могут участвовать как в процессах катаболизма, так и анаболизма, то есть цикл Кребса выполняет амфиболическую функцию (см. 7.1).

 

Раздел 8.1 

Дыхательная цепь и окислительное фосфорилирование.

 

 

8.1.1. В пируватдегидрогеназной  реакции и в цикле Кребса  происходит дегидрирование (окисление) субстратов (пируват, изоцитрат, α-кетоглутарат, сукцинат, малат). В результате этих реакций образуются НАДН и ФАДН2. Эти восстановленные формы коферментов окисляются в митохондриальной дыхательной цепи. Окисление НАДН и ФАДН2, протекающее сопряжённо с синтезом АТФ из АДФ и Н3РО4 называется окислительным фосфорилированием.

 

Схема строения митохондрии показана на рисунке 8.1. Митохондрии представляют собой внутриклеточные органеллы, имеющие две мембраны: наружную (1) и внутреннюю (2). Внутренняя митохондриальная мембрана образует многочисленные складки – кристы (3). Пространство, ограниченное внутренней митохондриальной мембраной, носит название матрикс (4), пространство, ограниченное наружной и внутренней мембранами, - межмембранное пространство (5).

 

Рисунок 8.1. Схема строения митохондрии.

 

8.1.2. Дыхательная  цепь – последовательная цепь  ферментов, осуществляющая перенос  ионов водорода и электронов  от окисляемых субстратов к  молекулярному кислороду – конечному  акцептору водорода. В ходе этих  реакций выделение энергии происходит постепенно, небольшими порциями, и она может быть аккумулирована в форме АТФ. Локализация ферментов дыхательной цепи – внутренняя митохондриальная мембрана.

 

Дыхательная цепь включает четыре мультиферментных комплекса (рисунок 8.2).

 

 

Рисунок 8.2. Ферментные комплексы дыхательной цепи (обозначены участки сопряжения окисления и фосфорилирования):

I. НАДН-KoQ-редуктаза (содержит промежуточные акцепторы  водорода: флавинмононуклеотид и  железосерные белки).

II. Сукцинат-KoQ-редуктаза (содержит промежуточные акцепторы водорода: ФАД и железосерные белки).

III. KoQН2-цитохром  с-редуктаза (содержит акцепторы  электронов: цитохромы b и с1, железосерные  белки).

IV. Цитохром  с-оксидаза (содержит акцепторы электронов: цитохромы а и а3, ионы меди Cu2+).

 

8.1.3. В качестве  промежуточных переносчиков электронов  выступают убихинон (коэнзим Q) и  цитохром с.

 

Убихинон (KoQ) – жирорастворимое витаминоподобное вещество, способен легко диффундировать в гидрофобной фазе внутренней мембраны митохондрий. Биологическая роль коэнзима Q – перенос электронов в дыхательной цепи от флавопротеинов (комплексы I и II) к цитохромам (комплекс III).

Цитохром с – сложный белок, хромопротеин, простетическая группа которого – гем – содержит железо с переменной валентностью (Fe3+ в окисленной форме и Fe2+ в восстановленной форме). Цитохром с является водорастворимым соединением и располагается на периферии внутренней митохондриальной мембраны в гидрофильной фазе. Биологическая роль цитохрома с – перенос электронов в дыхательной цепи от комплекса III к комплексу IV.

 

8.1.4. Промежуточные  переносчики электронов в дыхательной  цепи расположены в соответствии  с их окислительно-восстановительными  потенциалами. В этой последовательности  способность отдавать электроны (окисляться) убывает, а способность присоединять электроны (восстанавливаться) возрастает. Наибольшей способности отдавать электроны обладает НАДН, наибольшей способностью присоединять электроны – молекулярный кислород.

На рисунке 8.3 представлено строение реакционноспособного участка некоторых промежуточных переносчиков протонов и электронов в окисленной и восстановленной форме и их взаимопревращение.

 

 

 

 

 

 

 

Рисунок 8.3. Взаимопревращения окисленных и восстановленных форм промежуточных переносчиков электронов и протонов.

 

8.1.5. Механизм  синтеза АТФ описывает хемиосмотическая  теория (автор - П. Митчелл). Согласно  этой теории, компоненты дыхательной  цепи, расположенные во внутренней  митохондриальной мембране, в ходе  переноса электронов могут «захватывать» протоны из матрикса митохондрий и передавать их в межмембранное пространство. При этом наружная поверхность внутренней мембраны приобретает положительный заряд, а внутренняя – отрицательный, т.е. создаётся градиент концентрации протонов с более кислым значением рН снаружи. Так возникает трансмембранный потенциал (ΔµН+). Существует три участка дыхательной цепи, на которых он образуется. Эти участки соответствуют I, III и IV комплексам цепи переноса электронов (рисунок 8.4).

 

 

Рисунок 8.4. Расположение ферментов дыхательной цепи и АТФ-синтетазы во внутренней мембране митохондрий.

Протоны, выведенные в межмембранное пространство за счёт энергии переноса электронов, снова переходят в митохондриальный матрикс. Этот процесс осуществляется ферментом Н+-зависимой АТФ-синтетазой (Н+-АТФ-азой). Фермент состоит из двух частей (см. рисунок 8.4): водорастворимой каталитической части (F1) и погружённого в мембрану протонного канала (F0). Переход ионов Н+ из области с более высокой в область с более низкой их концентрацией сопровождается выделением свободной энергии, за счёт которой синтезируется АТФ.

 

 Раздел 8.2 

Коэффициент фосфорилирования.

 

 

8.2.1. Степень  сопряжённости окисления и фосфорилирования  в митохондриях характеризует  коэффициент фосфорилирования (Р/О). Он равен отношению количества молекул неорганического фосфата (Н3РО4), перешедшего в АТФ, к количеству атомов потреблённого кислорода (О2).

 

Например, если донором водорода для дыхательной цепи является молекула НАДН, то электроны от донора (НАДН) к акцептору (кислород) проходят 3 участка сопряжения окисления и фосфорилирования (I, III и IV ферментные комплексы дыхательной цепи). Таким образом, максимально может образоваться 3 молекулы АТФ (3 АДФ + 3 Н3РО4 → 3 АТФ). Затрачивается 1 атом кислорода (2 Н + О → Н2О). Значение коэффициента Р/О = 3/1 = 3.

 

Если донором водорода будет молекула ФАДН2, то электроны в дыхательной цепи проходят 2 участка сопряжения окисления и фосфорилирования (III и IV ферментные комплексы дыхательной цепи). Таким образом, максимально может образоваться 2 молекулы АТФ (2 АДФ + 2 Н3РО4 → 2 АТФ). Затрачивается, как и в предыдущем случае, 1 атом кислорода (2 Н + О → Н2О). Значение коэффициента Р/О = 2/1 = 2.

 

8.2.2. Более  сложный пример расчёта коэффициента  фосфорилирования – при окислении пирувата до конечных продуктов - показан на рисунке 8.5. В этом метаболическом пути происходит дегидрирование 4 субстратов (пирувата, изоцитрата, α-кетоглутарата и малата) с образованием НАДН и одного субстрата (сукцината) с образованием ФАДН2. Восстановленные коферменты окисляются в дыхательной цепи, и в сопряжённых реакциях фосфорилирования образуется (4×3 АТФ + 1×2 АТФ)=14 молекул АТФ. Ещё 1 молекула АТФ (ГТФ) образуется в реакции субстратного фосфорилирования на уровне сукцинил-КоА. Таким образом, при полном окислении 1 молекулы пирувата образуется 15 молекул АТФ (из них 14 - путём окислительного фосфорилирования).

 

Чтобы рассчитать количество потреблённого кислорода, нужно знать число реакций дегидрирования на данном участке метаболического пути. Для окисления каждой восстановленной формы кофермента необходим 1 атом кислорода (см. выше). Следовательно, в нашем примере потребляется 5 атомов кислорода. Значение коэффициента Р/О будет равно 14/5 = 2,8.

 

 

Рисунок 8.5. Расчёт энергетического баланса реакций окислительного декарбоксилирования пирувата и цикла Кребса.

 

8.1.6. Энергия, аккумулированная в форме АТФ, используется в организме для  обеспечения разнообразных биохимических  и физиологических процессов. Запомните  основные примеры использования  энергии АТФ:

1) синтез  сложных химических веществ из  более простых (реакции анаболизма);

2) сокращение  мышц (механическая работа);

3) образование  трансмембранных биопотенциалов;

4) активный  транспорт веществ через биологические  мембраны.

 

Раздел 8.3 

Разобщение дыхания и фосфорилирования.

 

 

8.3.1. Перенос  электронов в дыхательной цепи  не во всех случаях протекает  сопряжённо с фосфорилированием  АДФ. Состояние, при котором окисление  субстратов в дыхательной цепи  происходит, но АТФ при этом  не образуется, называется свободным (нефосфорилирующим) окислением. Энергия, выделяемая при окислении, рассеивается в виде теплоты.

 

В физиологических условиях свободное окисление может служить одним из механизмов терморегуляции. В организме человека и некоторых животных имеется особая ткань – бурый жир, содержащий митохондрии, приспособленные для выработки теплоты. Много бурого жира у новорождённых, в последующие периоды жизни его количество уменьшается. В митохондриях бурого жира содержание дыхательных ферментов значительно выше, чем ферментов, осуществляющих фосфорилирование АДФ, поэтому в них преобладают процессы свободного окисления.

 

Разобщение процессов окисления и фосфорилирования в митохондриях может иметь место при некоторых патологических состояниях. Основными симптомами таких состояний могут быть быстрая утомляемость, повышенная температура тела, снижение массы тела, несмотря на повышенный аппетит, учащение дыхания и сердцебиения.

 

8.3.2. Разобщение  процессов окисления и фосфорилирования  может быть вызвано действием ряда веществ, как природных, так и синтетических. Механизм действия этих веществ заключается в том, что они являются переносчиками протонов через мембрану. Вещества, разобщающие окисление и фосфорилирование, можно разделить на протонофоры и ионофоры.

 

Протонофоры представляют собой слабые гидрофобные органические кислоты, которые в форме аниона (R-COO-) связывают протоны в межмембранном пространстве, диффундируют через мембрану и диссоциируют в матриксе с образованием протонов. К этой группе относятся, например, свободные жирные кислоты, гормоны щитовидной железы, салицилаты, дикумарол, 2,4-динитрофенол (см. рисунок 8.6).

 

 

Рисунок 8.6. Механизм действия 2,4-динитрофенола.

 

Ионофоры (валиномицин, нигерицин, грамицидин) способны встраиваться в мембрану, образуя канал, по которому могут перемещаться протоны и другие одновалентные катионы - Na+ или K+ (рисунок 8.7). В результате снимается протонный потенциал и нарушается синтез АТФ.

 

 

Рисунок 8.7. Валиномицин облегчает проникновение в клетку ионов Н+.

8.4.1. Микросомальное  окисление является одним из  этапов биотрансформации – обезвреживания  неполярных (нерастворимых в воде) соединений как эндогенного происхождения, так и чужеродных для организма (ксенобиотиков). Эндогенные субстраты - холестерол, стероидные гормоны, ненасыщенные жирные кислоты, витамин D3. Экзогенные субстраты - лекарственные вещества. В результате окисления субстратов повышается их растворимость в воде, скорость выведения из организма. Биотрансформация лекарственных веществ, как правило, снижает их токсичность.

 

8.4.2. Ферментная  система микросомального окисления  встроена в мембраны эндоплазматического  ретикулума клетки (ЭПР, рисунок 8.8).

 

 

Рисунок 8.8. Структура эндоплазматического ретикулума (источник: Альбертс Б. и соавт., Молекулярная биология клетки, 1994).

 

Она представляет собой короткую цепь переноса водорода и включает несколько последовательно расположенных в мембране белков-ферментов (рисунок 8.9).

 

 

 

Рисунок 8.9. Схема монооксигеназной цепи окисления ЭПР.

 

Источником электронов и протонов в этой цепи является восстановленный кофермент НАДФН, который образуется в реакциях пентозофосфатного пути окисления глюкозы. Промежуточным акцептором Н+ и е— служит флавопротеин (ФлПр), содержащий кофермент ФАД. Конечное звено в цепи микросомального окисления - цитохром Р-450. Это - сложный белок, хромопротеин, в качестве простетической группы содержит гем. Цитохром Р-450 является монооксигеназой, то есть ферментом, включающим один из атомов молекулярного кислорода в окисляемое вещество. Поэтому цепь реакций микросомального окисления называют также монооксигеназной цепью.

 

Цитохром Р-450 выполняет две функции. Он связывает окисляемый субстрат и активирует молекулярный кислород, облегчая их взаимодействие друг с другом. Реакция, катализируемая цитохромом Р-450, называется реакцией гидроксилирования, так как образующийся продукт содержит ОН-группу (рисунок 8.10).

 

 

Рисунок 8.10. Механизм реакции гидроксилирования субстрата при участии цитохрома Р450.

 

В отличие от митохондриальной дыхательной цепи, при переносе электронов в монооксигеназной цепи не происходит аккумулирования энергии в виде АТФ. Поэтому микросомальное окисление является свободным окислением.

Информация о работе Энзимология как учение о ферментах. Простые и сложные ферменты