Автор работы: Пользователь скрыл имя, 05 Мая 2015 в 19:44, лекция
Метаболизм, или обмен веществ, представляет собой процесс, в котором, с одной стороны, из простых веществ строятся более сложные, а с другой — происходит распад веществ до конечных продуктов обмена, что сопровождается выделением энергии.
д) субстратное фосфорилирование на уровне сукцинил-КоА, в ходе которого энергия, освобождающаяся при гидролизе тиоэфирной связи, запасается в форме молекулы ГТФ. В отличие от окислительного фосфорилирования, этот процесс протекает без образования электрохимического потенциала митохондриальной мембраны (рис. 7.7, реакция 6).
е) дегидрирование сукцината с образованием фумарата и молекулы ФАДН2 (рис. 7.7, реакция 7). Фермент сукцинатдегидрогеназа прочно связан с внутренней мембраной митохондрии.
ж) гидратация фумарата, в результате чего в молекуле продукта реакции появляется легко окисляемая гидроксильная группа (рис. 7.7, реакция 8).
з) дегидрирование малата, приводящее к образованию оксалоацетата и третьей молекулы НАДН (рис.7.7, реакция 9). Образующийся в реакции оксалоацетат может вновь использоваться в реакции конденсации с очередной молекулой ацетил-КоА (рис. 7.6, реакция 1). Поэтому данный процесс носит циклический характер.
7.4.3. Таким образом, в результате описанных реакций подвергается полному окислению ацетильный остаток СН3-СО-. Количество молекул ацетил-КоА, превращаемых в митохондриях в единицу времени, зависит от концентрации оксалоацетата. Основные пути увеличения концентрации оксалоацетата в митохондриях (соответствующие реакции будут рассмотрены позднее):
а) карбоксилирование пирувата – присоединение к пирувату молекулы СО2 с затратой энергии АТФ;
б) дезаминирование или трансаминирование аспартата – отщепление аминогруппы с образованием на её месте кетогруппы.
7.4.4. Некоторые
метаболиты цикла Кребса могут
использоваться для синтеза
Раздел 8.1
Дыхательная цепь и окислительное фосфорилирование.
8.1.1. В пируватдегидрогеназной реакции и в цикле Кребса происходит дегидрирование (окисление) субстратов (пируват, изоцитрат, α-кетоглутарат, сукцинат, малат). В результате этих реакций образуются НАДН и ФАДН2. Эти восстановленные формы коферментов окисляются в митохондриальной дыхательной цепи. Окисление НАДН и ФАДН2, протекающее сопряжённо с синтезом АТФ из АДФ и Н3РО4 называется окислительным фосфорилированием.
Схема строения митохондрии показана на рисунке 8.1. Митохондрии представляют собой внутриклеточные органеллы, имеющие две мембраны: наружную (1) и внутреннюю (2). Внутренняя митохондриальная мембрана образует многочисленные складки – кристы (3). Пространство, ограниченное внутренней митохондриальной мембраной, носит название матрикс (4), пространство, ограниченное наружной и внутренней мембранами, - межмембранное пространство (5).
Рисунок 8.1. Схема строения митохондрии.
8.1.2. Дыхательная
цепь – последовательная цепь
ферментов, осуществляющая перенос
ионов водорода и электронов
от окисляемых субстратов к
молекулярному кислороду –
Дыхательная цепь включает четыре мультиферментных комплекса (рисунок 8.2).
Рисунок 8.2. Ферментные комплексы дыхательной цепи (обозначены участки сопряжения окисления и фосфорилирования):
I. НАДН-KoQ-редуктаза
(содержит промежуточные
II. Сукцинат-KoQ-редуктаза (содержит промежуточные акцепторы водорода: ФАД и железосерные белки).
III. KoQН2-цитохром с-редуктаза (содержит акцепторы электронов: цитохромы b и с1, железосерные белки).
IV. Цитохром
с-оксидаза (содержит акцепторы
8.1.3. В качестве
промежуточных переносчиков
Убихинон (KoQ) – жирорастворимое витаминоподобное вещество, способен легко диффундировать в гидрофобной фазе внутренней мембраны митохондрий. Биологическая роль коэнзима Q – перенос электронов в дыхательной цепи от флавопротеинов (комплексы I и II) к цитохромам (комплекс III).
Цитохром с – сложный белок, хромопротеин, простетическая группа которого – гем – содержит железо с переменной валентностью (Fe3+ в окисленной форме и Fe2+ в восстановленной форме). Цитохром с является водорастворимым соединением и располагается на периферии внутренней митохондриальной мембраны в гидрофильной фазе. Биологическая роль цитохрома с – перенос электронов в дыхательной цепи от комплекса III к комплексу IV.
8.1.4. Промежуточные
переносчики электронов в
На рисунке 8.3 представлено строение реакционноспособного участка некоторых промежуточных переносчиков протонов и электронов в окисленной и восстановленной форме и их взаимопревращение.
Рисунок 8.3. Взаимопревращения окисленных и восстановленных форм промежуточных переносчиков электронов и протонов.
8.1.5. Механизм
синтеза АТФ описывает
Рисунок 8.4. Расположение ферментов дыхательной цепи и АТФ-синтетазы во внутренней мембране митохондрий.
Протоны, выведенные в межмембранное пространство за счёт энергии переноса электронов, снова переходят в митохондриальный матрикс. Этот процесс осуществляется ферментом Н+-зависимой АТФ-синтетазой (Н+-АТФ-азой). Фермент состоит из двух частей (см. рисунок 8.4): водорастворимой каталитической части (F1) и погружённого в мембрану протонного канала (F0). Переход ионов Н+ из области с более высокой в область с более низкой их концентрацией сопровождается выделением свободной энергии, за счёт которой синтезируется АТФ.
Раздел 8.2
Коэффициент фосфорилирования.
8.2.1. Степень
сопряжённости окисления и
Например, если донором водорода для дыхательной цепи является молекула НАДН, то электроны от донора (НАДН) к акцептору (кислород) проходят 3 участка сопряжения окисления и фосфорилирования (I, III и IV ферментные комплексы дыхательной цепи). Таким образом, максимально может образоваться 3 молекулы АТФ (3 АДФ + 3 Н3РО4 → 3 АТФ). Затрачивается 1 атом кислорода (2 Н + О → Н2О). Значение коэффициента Р/О = 3/1 = 3.
Если донором водорода будет молекула ФАДН2, то электроны в дыхательной цепи проходят 2 участка сопряжения окисления и фосфорилирования (III и IV ферментные комплексы дыхательной цепи). Таким образом, максимально может образоваться 2 молекулы АТФ (2 АДФ + 2 Н3РО4 → 2 АТФ). Затрачивается, как и в предыдущем случае, 1 атом кислорода (2 Н + О → Н2О). Значение коэффициента Р/О = 2/1 = 2.
8.2.2. Более
сложный пример расчёта
Чтобы рассчитать количество потреблённого кислорода, нужно знать число реакций дегидрирования на данном участке метаболического пути. Для окисления каждой восстановленной формы кофермента необходим 1 атом кислорода (см. выше). Следовательно, в нашем примере потребляется 5 атомов кислорода. Значение коэффициента Р/О будет равно 14/5 = 2,8.
Рисунок 8.5. Расчёт энергетического баланса реакций окислительного декарбоксилирования пирувата и цикла Кребса.
8.1.6. Энергия,
аккумулированная в форме АТФ,
используется в организме для
обеспечения разнообразных
1) синтез сложных химических веществ из более простых (реакции анаболизма);
2) сокращение мышц (механическая работа);
3) образование
трансмембранных
4) активный
транспорт веществ через
Раздел 8.3
Разобщение дыхания и фосфорилирования.
8.3.1. Перенос
электронов в дыхательной цепи
не во всех случаях протекает
сопряжённо с
В физиологических условиях свободное окисление может служить одним из механизмов терморегуляции. В организме человека и некоторых животных имеется особая ткань – бурый жир, содержащий митохондрии, приспособленные для выработки теплоты. Много бурого жира у новорождённых, в последующие периоды жизни его количество уменьшается. В митохондриях бурого жира содержание дыхательных ферментов значительно выше, чем ферментов, осуществляющих фосфорилирование АДФ, поэтому в них преобладают процессы свободного окисления.
Разобщение процессов окисления и фосфорилирования в митохондриях может иметь место при некоторых патологических состояниях. Основными симптомами таких состояний могут быть быстрая утомляемость, повышенная температура тела, снижение массы тела, несмотря на повышенный аппетит, учащение дыхания и сердцебиения.
8.3.2. Разобщение
процессов окисления и
Протонофоры представляют собой слабые гидрофобные органические кислоты, которые в форме аниона (R-COO-) связывают протоны в межмембранном пространстве, диффундируют через мембрану и диссоциируют в матриксе с образованием протонов. К этой группе относятся, например, свободные жирные кислоты, гормоны щитовидной железы, салицилаты, дикумарол, 2,4-динитрофенол (см. рисунок 8.6).
Рисунок 8.6. Механизм действия 2,4-динитрофенола.
Ионофоры (валиномицин, нигерицин, грамицидин) способны встраиваться в мембрану, образуя канал, по которому могут перемещаться протоны и другие одновалентные катионы - Na+ или K+ (рисунок 8.7). В результате снимается протонный потенциал и нарушается синтез АТФ.
Рисунок 8.7. Валиномицин облегчает проникновение в клетку ионов Н+.
8.4.1. Микросомальное
окисление является одним из
этапов биотрансформации –
8.4.2. Ферментная
система микросомального
Рисунок 8.8. Структура эндоплазматического ретикулума (источник: Альбертс Б. и соавт., Молекулярная биология клетки, 1994).
Она представляет собой короткую цепь переноса водорода и включает несколько последовательно расположенных в мембране белков-ферментов (рисунок 8.9).
Рисунок 8.9. Схема монооксигеназной цепи окисления ЭПР.
Источником электронов и протонов в этой цепи является восстановленный кофермент НАДФН, который образуется в реакциях пентозофосфатного пути окисления глюкозы. Промежуточным акцептором Н+ и е— служит флавопротеин (ФлПр), содержащий кофермент ФАД. Конечное звено в цепи микросомального окисления - цитохром Р-450. Это - сложный белок, хромопротеин, в качестве простетической группы содержит гем. Цитохром Р-450 является монооксигеназой, то есть ферментом, включающим один из атомов молекулярного кислорода в окисляемое вещество. Поэтому цепь реакций микросомального окисления называют также монооксигеназной цепью.
Цитохром Р-450 выполняет две функции. Он связывает окисляемый субстрат и активирует молекулярный кислород, облегчая их взаимодействие друг с другом. Реакция, катализируемая цитохромом Р-450, называется реакцией гидроксилирования, так как образующийся продукт содержит ОН-группу (рисунок 8.10).
Рисунок 8.10. Механизм реакции гидроксилирования субстрата при участии цитохрома Р450.
В отличие от митохондриальной дыхательной цепи, при переносе электронов в монооксигеназной цепи не происходит аккумулирования энергии в виде АТФ. Поэтому микросомальное окисление является свободным окислением.
Информация о работе Энзимология как учение о ферментах. Простые и сложные ферменты