Энзимология как учение о ферментах. Простые и сложные ферменты

Автор работы: Пользователь скрыл имя, 05 Мая 2015 в 19:44, лекция

Описание работы

Метаболизм, или обмен веществ, представляет собой процесс, в котором, с одной стороны, из простых веществ строятся более сложные, а с другой — происходит распад веществ до конечных продуктов обмена, что сопровождается выделением энергии.

Файлы: 1 файл

biohimiya_lekcii.doc

— 3.90 Мб (Скачать файл)

 

Источником галактозы в организме является дисахарид лактоза, содержащаяся в молоке. После расщепления лактозы в микроворсинках слизистой оболочки тонкого кишечника галактоза под действием фермента галактокиназы превращается в печени в галактозо-1-фосфат (рисунок 5.3).

 

 

Рисунок 5.3. Обмен галактозы и основная причина галактоземии.

 

В нормальных условиях галактозо-1-фосфат под влиянием галактозо-1-фосфатуридилтрансферазы переходит в УДФ-галактозу. В результате угнетения этой реакции в организме накапливается галактозо-1-фосфат - метаболит с очень коротким в нормальных условиях периодом существования. В связи с этим в норме он не вызывает нарушений. Однако при накоплении галактозо-1-фосфата проявляется его мощное токсическое действие. Природа токсического влияния галактозо-1-фосфата, вероятно, объясняется структурным сходством галактозы с глюкозой. Галактозо-1-фосфат, присоединяясь к активному центру ферментов, метаболизирующих глюкозо-1-фосфат, блокирует их, что приводит к нарушению обмена глюкозы. Так, в клетках печени накопление галактозо-1-фосфата вызывает ингибирование фосфоглюкомутазы и глюкозо-6-фосфатазы - ферментов, участвующих в превращении гликогена в глюкозу, в результате чего снижается уровень глюкозы в крови. В хрусталике глаза избыток галактозы переходит в шестиатомный спирт галактит. Галактит не подвергается дальнейшим превращениям и приводит к набуханию соединительной ткани и развитию катаракты. В клетках головного мозга нарушается синтез гликолипидов вследствие недостаточного образования их предшественника УДФ-галактозы.

 

Если галактозу не исключить из диеты, возможны тяжёлые последствия, в том числе летальный исход.

Гликогенозы

 

Этот термин является общим для группы наследственных заболеваний, характеризующихся отложением в тканях аномально больших количеств полисахарида - гликогена, являющегося важным источником энергии и резервом углеводов в тканях. Врождённые нарушения содержания и структуры гликогена обусловлены дефицитом одного из ферментов, участвующих в расщеплении гликогена в печени или в скелетных мышцах (рисунок 5.4).

Рисунок 5.4. Расщепление гликогена в печени и скелетных мышцах и его нарушения.

 

Примеры:

 

Гликогеноз I типа (болезнь Гирке) – дефицит глюкозо-6-фосфатазы в печени. Характеризуется повышенным содержанием гликогена в печени; содержание глюкозы в крови снижено. После введения адреналина или глюкагона (гормонов, активирующих фермент гликогенфосфорилазу), уровень пирувата и лактата в крови существенно возрастает.

 

Гликогеноз V типа (болезнь Мак-Ардля) – дефицит фосфорилазы в скелетных мышцах. У больных развивается пониженная выносливость к физическим нагрузкам. В скелетных мышцах содержится аномально высокое количество гликогена. Тем не менее, после выполнения физической работы или после введения адреналина содержание лактата в крови не увеличивается.

 

Гликогеноз VI типа (болезнь Херса) – дефицит фосфорилазы в печени. Для этого заболевания характерно повышение содержания гликогена в печени, гипогликемия. После введения адреналина или глюкагона содержание лактата в крови не увеличивается (в отличие от гликогеноза I типа).

 

Раздел 5.3 

Приобретённые нарушения ферментативной активности и их последствия.

 

 

Не во всех случаях недостаток фермента в организме связан с генетическими дефектами. Например, при воспалительных заболеваниях и опухолях желудка нарушается выделение соляной кислоты и желудочных ферментов. В результате нарушается переваривание пищи, размножаются микроорганизмы, усиливаются процессы брожения и гниения. Недостаточность поджелудочной железы, развивающаяся при хроническом алкоголизме, сопровождается снижением выработки и секреции в просвет двенадцатиперстной кишки трипсиногена, химотрипсиногена, липазы и амилазы. Это приводит к нарушению переваривания и всасывания белков, жиров и углеводов в тонком кишечнике.

 

Другой пример нарушения функционирования ферментов может быть связан с недостаточностью биосинтеза небелковой части сложного фермента (кофермента или простетической группы). Биосинтез ферментного белка может осуществляться нормально, но тем не менее активность фермента в тканях понижена. Как вам известно из материалов темы 1, большинство коферментов является производными витаминов. Витамины в организме человека не синтезируются и поэтому должны поступать в готовом виде с пищей. Если тот или иной витамин в пище отсутствует, то соответствующий кофермент не может быть построен и биохимические реакции, в которых он участвует, не происходят. Заболевания, обусловленные отсутствием витаминов в организме, называют авитаминозами. По существу они являются аферментозами.

 

Авитаминозы — полное истощение витаминных ресурсов организма, проявляющееся на фоне специфических клинических симптомов, характерных для конкретного витамина или их группы. Авитаминозы развиваются, как правило, на фоне длительного голодания.

 

Чаще всего приходится встречаться с гиповитаминозными состояниями. Гиповитаминозом считают снижение содержания витаминов в организме по сравнению с его нормальными потребностями. Клинически гиповитаминоз проявляется отдельными нерезко выраженными проявлениями, характерными и для этого вида авитаминоза. Неспецифическими проявлениями гиповитаминозов могут быть общие для различных видов гиповитаминозов или полигиповитаминозов симптомы: снижение аппетита, работоспособности, быстрая утомляемость и др. Причины, приводящие к развитию гиповитаминозов, многообразны, но в основном их можно разделить на 4 группы:

алиментарная недостаточность витаминов;

угнетение нормальной кишечной микрофлоры, продуцирующей ряд витаминов;

нарушение усвояемости (ассимиляции) витаминов;

повышенная потребность организма в витаминах.

 

Давно известна и когда-то была широко распространена болезнь «бери-бери» (сейчас ее называют полиневритом — множественным воспалением нервов, в некоторых слаборазвитых странах она и теперь встречается нередко). Причина ее— отсутствие в пище витамина В1. Этот витамин— тиамин — в соединении с фосфорной кислотой представляет собой небелковую часть фермента декарбоксилазы, с которым мы уже встречались: декарбоксилаза разрушает карбоксильную группу (СООН) некоторых органических кислот, отщепляя от нее углекислоту (СО2). Для обмена веществ в нервной системе особую роль играет декарбоксилирование пировиноградной кислоты. В отсутствие витамина В1 декарбоксилаза образоваться не может, реакция прекращается и в нервной ткани наступают нарушения, типичные для полиневрита: параличи конечностей, боли в мышцах, слабость, контрактуры.

 

Тяжелое заболевание — пеллагра — связано с отсутствием в пище витамина РР — никотиновой кислоты. Название «пеллагра» происходит от двух итальянских слов, которые по-русски означают шершавая кожа. При пеллагре наблюдаются воспаление кожи, нарушения деятельности кишечника и психические расстройства. Интересно отметить, что связь пеллагры с недостатком никотиновой кислоты была установлена только в 1937 г., в то время как само вещество известно химикам с 1866 г.

 

Сейчас мы знаем, что причина нарушений при авитаминозе РР заключается в том, что никотиновая кислота в форме никотинамида входит в состав кофермента — небелковой части большой группы окислительных ферментов — никотинамидных дегидрогеназ, о которых мы подробно рассказывали, когда обсуждали процесс биологического окисления. Мы не вдавались в тонкости их химической структуры, приводили лишь их сокращенные обозначения НАД и НАДФ и подчеркивали, что никотинамид представляет собой их главную составную часть.

 

Естественно, что в отсутствие никотинамида фермент не работает. Следовательно, и здесь, в случае пеллагры, авитаминоз обернулся аферментозом.

 

По некоторым данным, пеллагра вызывается отсутствием в пище не одной только никотиновой кислоты, но и еще одного соединения — пиридоксина, известного под названием витамина В6. Считают, что нервные расстройства, наблюдаемые при пеллагре у людей, зависят именно от отсутствия пиридоксина. На протяжении двух-трех последних десятилетий, главным образом благодаря исследованиям советского биохимика академика А. Е. Браунштейна и его школы, было показано, что производные пиридоксина в соединении с фосфорной кислотой входят в состав многих ферментов обмена аминокислот. Недостаток в пище пиридоксина — вещества, не синтезируемого в организме человека, приводит к невозможности построить нуждающиеся в нем ферменты, а это в свою очередь ведет к нарушениям обмена веществ и к характерным заболеваниям.

 

Упомянем еще об одном витамине. Он называется витамином В2, а по химической природе представляет собой довольно сложную циклическую структуру — рибофлавин. Авитаминоз В2 связан с тяжелыми поражениями кожи лица и глаз. Причина — недостаток фермента. Вспомним, что в цепи биологического окисления кроме никотинамидных дегидрогеназ участвует еще одна группа сходных с ними ферментов — флавиновые дегидрогеназы. Именно они не могут быть синтезированы в организме при отсутствии в пище рибофлавина, а их недостаток проявляется в форме тяжелого заболевания.

 

Таким образом, при самых различных авитаминозах развитие заболевания связано с отсутствием или недостатком ферментов, которые не могут быть синтезированы в организме из-за отсутствия необходимых витаминов. В большинстве случаев лечение таких заболеваний заключается в восполнении витаминных запасов организма. Профилактика витаминной недостаточности состоит в обеспечении полного соответствия между потребностями человека в витаминах и их поступлением с пищей. Наряду с полноценным витаминным составом рацион должен быть оптимален по своей энергетической ценности, содержать соответствующие количества других пищевых веществ, прежде всего незаменимых. При этом особенно важно достаточное поступление с пищей полноценного белка, дефицит которого может вести к нарушению процессов усвоения витаминов в желудочно-кишечном тракте, их транспорта в крови, внутриклеточного метаболизма и др. Обязательным требованием является сбалансированность между всеми заменимыми и незаменимыми факторами питания.

 

Основные проявления некоторых гипо- и авитаминозов представлены в таблице 5.2.

 

 

Таблица 5.2

 

Характеристика гиповитаминозов

иамин (витамин B1) бери-бери Мышечная слабость, истощение, нарушение координации движений, периферический неврит, сердечная недостаточность, в крови резко возрастает концентрация пировиноградной кислоты

рибофлавин (витамин B2)   Очаговое выпадение волос, повреждение слизистой рта, изъязвление углов рта и глоссит, воспаление роговицы глаз, катаракта хрусталика

 

ниацин (витамин PP) пеллагра Дерматит (поражение кожи), диарея (поражение желудочно-кишечного тракта), деменция (нарушения нервной деятельности, слабоумие)

 

биотин (витамин H) себорея Очаговое выпадение волос, анемия, потеря аппетита и тошнота, депрессия, слабость, болезненность и слабость мышц, сухость и сероватый оттенок кожи

 

цианкобаламин (витамин B12) злокачественная анемия  Анемия, поражение желудочно-кишечного тракта, утомляемость, онемение и другие нервные нарушения, аномалии сердечного ритма

 

фолиевая кислота (витамин Bc) мегалобластическая анемия Снижение количества эритроцитов и гемоглобина в крови; появление в крови и костном мозге крупных клеток – мегалобластов

 

аскорбиновая кислота (витамин C) цинга  Кровоточивость дёсен, выпадение зубов, подкожные кровоизлияния, медленное заживление ран, потеря волос, слабость, раздражительность

 

Раздел 5.4 

Изменения активности ферментов в тканях под действием лекарственных препаратов и ядов.

 

 

Механизмы токсического действия подавляющего большинства химических веществ в настоящее время неизвестны. В этой связи, очень многие описываемые ниже классы молекул и молекулярных комплексов, образующих организм, рассматриваются, по большей части, лишь как вероятные рецепторы (мишени) действия ядов. Рассмотрение их в этом ракурсе правомочно, поскольку в основе действия некоторых хорошо изученных токсинов лежит взаимодействие с представителями именно этих классов биомолекул.

 

Структурными элементами клеток, с которыми взаимодействуют токсические вещества, как правило, являются: белки; нуклеиновые кислоты; липидные элементы биомембран; селективные рецепторы эндогенных биорегуляторов (гормонов, нейромедиаторов и т.д.).

 

При взаимодействии ядовитых веществ с белками токсический эффект может развиваться при нарушении каждой из функций белков (транспортной, структурной, каталитической). 

 

К числу веществ, денатурирующих белки, относятся крепкие щелочи, кислоты, окислители, ионы тяжелых металлов. В основе денатурации лежит повреждение внутримолекулярных связей, поддерживающих вторичную, третичную структуру белка. При этом наиболее часто токсические соединения взаимодействуют с СООН-, NH-, OH-, SH-группами аминокислот, образующих белки. Многочисленные токсины, связывающиеся с SH-группами, называются тиоловыми ядами. К числу тиоловых ядов прежде всего следует отнести тяжелые металлы, такие как ртуть, мышьяк, сурьма, таллий, органические соединения этих металлов (метилртуть, люизит и т.д.). Другие металлы более активно взаимодействуют с карбоксильными группами (свинец, кадмий, никель, медь, марганец, кобальт).

 

Особое значение в токсикологии придают действию чужеродных веществ (ксенобиотиков) на ферменты. Возможными механизмами модуляции активности ферментов химическими веществами являются:

 

1. Усиление  каталитической активности 

усиление синтеза энзимов

блокада разрушения ферментов

активация ферментов

 

2. Угнетение каталитической активности

угнетение синтеза ферментов

ускорение разрушения ферментов

угнетение специфической активности

 

3. Изменение  конформации ферментов

Усиление каталитической активности ферментов

 

Это действие может быть вызвано поступлением в организм индукторов синтеза белков.

 

Физиологическими индукторами синтеза ферментов являются многие субстраты и вещества, повышающие содержание коферментов в биосредах. Некоторые гормоны выступают в качестве индукторов синтеза белка. Так, трииодтиронин у  крыс с удалённой щитовидной железой  существенно увеличивает содержание глюкозо-6-фосфатазы и НАДН-цитохром-с-редуктазы в микросомах печени. Стероидные гормоны - активные индукторы синтеза ферментов, например, триптофанпирролазы и др.

Информация о работе Энзимология как учение о ферментах. Простые и сложные ферменты