Энзимология как учение о ферментах. Простые и сложные ферменты

Автор работы: Пользователь скрыл имя, 05 Мая 2015 в 19:44, лекция

Описание работы

Метаболизм, или обмен веществ, представляет собой процесс, в котором, с одной стороны, из простых веществ строятся более сложные, а с другой — происходит распад веществ до конечных продуктов обмена, что сопровождается выделением энергии.

Файлы: 1 файл

biohimiya_lekcii.doc

— 3.90 Мб (Скачать файл)

 

К числу индукторов относятся барбитураты, циклические углеводороды, полигалогенированные полициклические углеводороды и многие другие. Токсичность такого известного токсиканта, как 2,3,7,8-тетрахлорпарадибензодиоксин (диоксин, ТХДД) в настоящее время связывают именно со способностью вызывать индукцию синтеза ферментов. Среди индукторов многие - канцерогены. Например, 3,4-бенз(а)пирен, 5-метилхолантрен.

 

Активность фермента зависит от наличия в среде кофакторов или простетических групп. Функции кофакторов выполняют различные производные витаминов и ионы металлов. Их поступление в организм необходимо, однако передозировка сопровождается интоксикацией. Особенно опасно перенасыщение организма жирорастворимыми витаминами (А, D). Стойкое повышение содержания ионов кальция в цитоплазме клеток, отмечаемое при интоксикациях некоторыми веществами, сопровождается чрезмерной активацией ряда ферментов (см. ниже).

 

Существенное влияние на активность ферментов оказывают вещества, блокирующие процессы их разрушения. Все белковые молекулы в организме имеют определенное время жизни. Процессы непрерывающегося синтеза уравновешиваются столь же постоянным разрушением белка. Период полусуществования молекул ферментов колеблется в широких пределах. Например, для альдолазы мышечной ткани крыс он составляет около 20 дней, для каталазы - 1 день, для триптофанпирролазы печени - 2 часа. В процессе разрушения ферментов принимают участие протеазы и эндопептидазы. Разрушение короткоживущих белков осуществляется также энзимами аппарата Гольджи. Ингибиторами разрушения ферментов (и других белков) являются ингибиторы протеаз/пептидаз. К их числу, относятся некоторые карбамилфосфаты.

 

Разрушение SH-содержащих ферментов иногда начинается с окисления этих групп. Ксенобиотики с высоким восстановительным потенциалом, защищая сульфгидрильные группы, могут предотвращать разрушение ферментов. Эти эффекты также могут лежать в основе токсического процесса.

 

Особую роль в токсикологии играют механизмы активации лизосомальных ферментов, вызывающих, при выходе в цитоплазму, аутолиз клеток. Посредством такого механизма действуют на организм многочисленные вещества, например, иприты, СCl4, и т.д.

Угнетение каталитической активности

 

Снижение активности ферментов при действии токсикантов может быть следствием трех эффектов: подавления процессов синтеза апофермента и кофакторов, активации разрушения, угнетения специфической активности.

 

К числу наиболее распространенных кофакторов, помимо металлов, относятся железопорфирины, флавины, никотинамид-адениндинуклеотид (НАД), пиридоксальфосфат, тиаминпирофосфат и др. Отчасти эти вещества синтезируются в организме животных и человека, отчасти попадают с пищей в форме витаминов. Некоторые вещества являются конкурентами кофакторов ферментов. Так, дикумарол конкурентно препятствует утилизации печенью витамина К, необходимого для синтеза протромбина, поэтому через 24 - 96 ч после поступления вещества в организм в токсических дозах возможно развитие кровотечений угрожающих жизни.

 

Некоторые токсиканты нарушают образование коферментов, предшественники которых поступают в организм с пищей. Так, гидразин и его производные, взаимодействуя с пиридоксалем, содержащимся в клетках, образуют пиридоксальгидразоны, которые, в свою очередь, угнетают активность пиридоксалькиназы и блокируют тем самым синтез в организме пиридоксальфосфата. В итоге понижается активность большого числа ферментов, кофактором которых является пиридоксальфосфат (декарбоксилазы, трансаминазы и т.д.).

 

К числу полностью синтезируемых в организме кофакторов относятся железопорфирины. Блокада их синтеза приводит к тяжелым последствиям. Так, хроническое отравление свинцом сопровождается нарушением синтеза гема, вследствие чего развивается дефицит гемопротеинов (гемоглобина, миоглобина, гемсодержащих ферментов).

 

Активация процесса разрушения ферментов токсикантами, как механизм их токсического действия, встречается редко. Катаболизм некоторых ферментов усиливается на фоне хронической интоксикации стероидными препаратами и их аналогами.

 

Наиболее часто в основе интоксикации лежит угнетение токсикантом специфической активности ферментов. Выделяют следующие механизмы ингибиторного действия ксенобиотиков:

 

1. Конкурентное  ингибирование. В основе взаимодействия  лежит конкуренция ксенобиотика  с субстратом за активный центр  фермента. При этом реализуются две возможности:

 

а) токсикант вступает в превращение вместо субстрата (конкурентные субстраты). Так, некоторые эфиры холина (пропионилхолин, бутирилхолин и др.) гидролизуются ацетилхолинэстеразой вместо ацетилхолина. Конкурентным ингибитором аконитазы, одного из ферментов цикла трикарбоновых кислот, участвующих в превращении лимонной кислоты в аконитовую, является фторлимонная кислота, образующаяся в процессе метаболических превращений фторуксусной кислоты.

 

б) взаимодействие токсиканта с активным центром не приводит к его метаболизму (стабильные ингибиторы). Примерами таких токсикантов являются карбаматы - ингибиторы холинэстеразы.

 

Конкурентный тип ингибирования развивается также при образовании прочных ковалентных связей между токсикантами и активными центрами некоторых ферментов. Этот вид ингибирования приводит к полному прекращению ферментативной активности. Таким способом фосфорорганические соединения взаимодействуют с ацетилхолинэстеразой.

 

2. Неконкурентное  ингибирование. В данном случае токсикант взаимодействует с добавочным, аллостерическим, центром энзима, изменяя при этом конформацию активного центра и снижая, тем самым, его сродство к субстрату. Таким способом упомянутая выше фторлимонная кислота угнетает активность транслоказы, фермента, обеспечивающего активный транспорт цитрата через мембраны митохондрий, а мышьяк и его соединения - SH-содержащие энзимы.

 

3. Другие  механизмы. Для осуществления ферментативной  активности энзимы нуждаются  в присутствии в среде ионов  металлов: Mg2+, Ca2+, K+, Mn2+, Zn2+, Co2+ и др. Связывание этих металлов токсикантами приводит к угнетению активности. Таков механизм токсического действия комплексообразователей (ЭДТА, ДТПА, дитизона и др.), салициловой кислоты и др. Особое токсикологическое значение имеют вещества, взаимодействующие с железом, кобальтом, медью, входящими в структуру более сложных простетических групп ферментов (гем-содержащие энзимы, цитохромы, каталаза, пероксидаза, гемоглобин, миоглобин). К числу подобных токсикантов относятся цианиды, сульфиды, азиды, монооксид углерода и др.

 

Некоторые ферменты находятся под постоянным контролем специальных кооперационных систем. Так, система Г—SH/Г—S—S—Г (восстановленный/окисленный глутатион) регулирует активность SH-ферментов (пирофосфатаза, фосфоглицеральдегид-дегидрогеназа, гемоглобинредуктаза и др.). Токсиканты, понижающие содержание восстановленного глутатиона в тканях, такие как гидроксиламин, фенилгидразин, дихлорэтан и др., подавляют активность этих ферментов.

 

Одна из патохимических классификаций преимущественно ферментных ядов разработана А.А. Покровским (таблица 5.3).

 

Таблица 5.3. Патохимическая классификация ядов

МЕХАНИЗМ ДЕЙСТВИЯ ЯДОВ НА ФЕРМЕНТЫ 

ХАРАКТЕРНЫЕ ПРЕДСТАВИТЕЛИ ТОКСИЧНЫХ ВЕЩЕСТВ

 

Структурные аналоги данного субстрата, взаимодействующие с ним по типу "конкурентного торможения"  

Фосфорорганические соединения и другие антихолинэстеразные соединения, циклосерины, галоидопроизводные пиримидина и др.

 

Предшественники структурных аналогов субстрата, из которых образуются ингибиторы ферментов в процессе "летального синтеза" 

Фторацетат, хлорацетат, галоидсодержащие производные пиримидина и пурина, метиловый спирт, этиленгликоль и др.

 

Структурные аналоги коферментов, антивитамины. Конкурентное торможение 

Антивитамины РР, В6 и др.

 

Соединения, тормозящие биосинтез ферментов. Крнкурентное торможение; в отдельных случаях неконкурентное 

Структурные аналоги природных аминокислот (фторфенилаланин, азатриптофан и др.), некоторые антибиотики: пенициллин, левомицетин, ауреомицин и др.

 

Соединения, блокирующие функциональные группы белка или кофермента. Неконкурентное торможение 

Цианиды, сероводород, оксид углерода, метгемоглобинообразователи, соединения, связывающие SH-группы и др.

 

 

Соединения, нарушающие связи атомов металлов в молекуле фермента 

Хелатирующие соединения: ЭДТА, ДТПА, 8-оксихинолидин и т.п.

 

Соединения, разобщающие сочетанную деятельность ферментов 

Разобщители клеточного дыхания и окислительного фосфорилирования (динитрофенол), фториды, некоторые наркотики и др.

 

Соединения, денатурирующие белок (грубое нарушение структуры белковой молекулы) 

Крепкие кислоты, щелочи, тяжелые металлы, органические растворители и др.

 

Биологические яды, содержащие ферменты, разрушающие структурные элементы клеток и тканей, образующие в организме токсичные вещества 

Яды змей и насекомых, бактериальные токсины

 

Аналоги медиаторов 

Ингибиторы моноаминоксидазы и др.

 

Биологические последствия действия токсических веществ на ферменты.

 

Поскольку все процессы в живых организмах протекают при участии ферментов, и все фундаментальные свойства живых систем неразрывно связаны с нормальным течением этих процессов, теоретически любые проявления жизни могут быть нарушены теми или иными токсикантами, изменяющими активность ферментов.

 

Раздел 6.1 

Энзимотерапия: основные направления, примеры.

 

 

Идея использования ферментов в качестве лечебных средств возникла много лет тому назад. Однако возможность широкого их применения для лечения самых различных заболеваний появилась лишь в последние десятилетия, когда были получены кристаллические препараты ферментов. С каждым годом ферменты находят все большее применение в практической медицине. Расширяется также перечень ферментов, которые используются в комплексной терапии. В настоящее время в терапии различных болезней используются несколько десятков разных ферментных препаратов. Наиболее широкое применение нашли препараты лизирующего типа, прежде всего протеиназы поджелудочной железы (трипсин, химотрипсин, химопсин, панкреатин), протеолитический фермент крови плазмин (фибринолизин), фермент желудочного сока — пепсин и другие. Из препаратов растительного и микробного происхождения чаще всего используются протелин, кератиназа и папаин. Опубликованы положительные результаты действия гиалуронидазы, эластазы и коллагеназы.

 

В последние годы решение проблемы применения ферментов для лечебных целей ведется в различных направлениях:

 

1. Восполнение  образовавшегося в организме  дефицита того или иного фермента  путем введения в организм  недостающего фермента.

 

2. Неспецифическое использование специфических свойств отдельных ферментов для устранения патологического процесса.

 

Непосредственное отношение к данной проблеме имеет вопрос изучения возможностей применения в лечебной практике различных ингибиторов ферментов и коферментов.

Заместительная энзимотерапия

 

Заместительная энзимотерапия — применение ферментов с целью компенсации врожденной или приобретенной функциональной недостаточности определенных органов, тканей или систем, например, поджелудочной железы, печени, желудка. В лечебной практике часто встречаются случаи, когда ферменты, расщепляющие (переваривающие) белки, жиры или углеводы, образуются в недостаточных количествах или слишком быстро инактивируются. Восполнение ферментного дефицита в желудочно-кишечном тракте легко достигается путем приема соответствующих природных смесей, содержащих необходимые ферменты (пепсин, трипсин, химотрипсин, карбоксипептидаза, амилаза, сахараза).

 

Заместительная энзимотерапия дает положительный результат при различных заболеваниях печени, желчного пузыря, поджелудочной железы и собственно пищеварительного тракта. Применение ферментов полезно после операций на поджелудочной железе, при хронических панкреатитах, при нарушениях пищеварения в старости.

 

Проблема доставки ферментов к месту назначения решается довольно легко, если дефицит ферментов касается крови, лимфы или экстрацеллюлярной жидкости. И, наоборот, устранение ферментного дефицита, возникшего в отдельных органах и тканях, является трудной и до сих пор практически не решенной задачей. Серьезным препятствием для проникновения внутрь клетки таких высокомолекулярных соединений, как ферменты, является наружная клеточная мембрана, состоящая из белкового и липидного слоев.

 

Изучение возможности проникновения ферментов через клеточные мембраны является важнейшей задачей медицинской энзимологии. Имеются сообщения, в которых авторы предлагают вводить недостающие ферменты в клетку, поместив их предварительно в липосомы — искусственно полученные сферические замкнутые частицы диаметром от 0,5 до 10 мкм, образованные бимолекулярными липидными слоями. Такие структуры получают из водной суспензии фосфолипидов, обрабатывая ее ультразвуком высокой или низкой частоты.

 

 

Рисунок 6.1. Схема строения липидного бислоя липосомы (слева); пространственная структура липосомы (справа).

 

Как лекарственные формы, липосомы имеют ряд преимуществ. Прежде всего, липосомы получают из веществ, которые не являются чужеродными для организма и поэтому не оказывают на него какого-либо неблагоприятного воздействия. Липосомы хорошо проникают через клеточные мембраны и тем самым обеспечивают более эффективный транспорт содержащихся в них лекарственных веществ внутрь клетки, чем при применении обычных препаратов.

 

 

Рисунок 6.2. Способы проникновения содержимого липосом в клетку.

 

Варьируя свойства липосомы, можно изменять условия транспорта веществ в отдельные части клетки. Установлено, например, что многослойные липосомы проникают внутрь клетки в неизмененном виде и поглощаются лизосомами, где под влиянием липаз происходит распад липосомы и высвобождение инкапсулированных в них лекарственных веществ. В отличие от этого, однослойные липосомы сливаются с плазматическими мембранами клеток и освобождают лекарственные вещества в цитоплазму. Таким образом, с помощью липосомы возможен направленный транспорт веществ, в том числе высокомолекулярных соединений белковой пророды, в цитоплазму или в некоторые органеллы клеток.

Тромболитическая терапия

 

Широкое применение в лечебной практике находят ферментные препараты, растворяющие сгустки и тромбы крови. 

Информация о работе Энзимология как учение о ферментах. Простые и сложные ферменты