Лекции по "Пищевой химии"

Автор работы: Пользователь скрыл имя, 19 Июня 2013 в 22:42, курс лекций

Описание работы

ЛЕКЦИЯ 1. Клеточный компартмент и его функции

Все виды пищевого сырья имеют биологическое происхождение и, следовательно, имеют единую структурную организацию. Поскольку структурной единицей живого организма является клетка, то клеточная структура характерна для всех видов пищевого сырья. Поэтому знание строения клетки и закономерностей её функционирования позволяет вывести общие закономерности процессов, происходящих при хранении и переработке пищевого сырья.

Файлы: 1 файл

Пищевая химия. Лекции 1, 4, 5.docx

— 645.46 Кб (Скачать файл)

           |

           CH2

            |

    O = S = O

            |

           OH

 

Также могут протекать реакции дезамидирования аспарагина и глутамина, дегидратации глицина с образованием новых ковалентных связей, например:

Н2N – CH – COОН                                                  НN – CH – COОН

                                  |                                                                        |      |

                               CH2                                                         O = C CH2


                               |                                     – NH3


                                  CH2                                                                      CH2

                                  |                                                              Пирролидонкарбоновая

                          О = С – NH2                                                     (пироглутаминовая)

                    Глутамин                                                                кислота

 

 

Н2N – CH2 – COОН                                           НN – CH2 – C = O


                                        +                               – 2H2О                    |                 |

                          НOОC – CH2 – NН2                                      О = C – CH2 – NН

 

                       Две молекулы глицина                                   2,5-Дикетопиперазин

 

 

Много 2,5-дикетопиперазина образуется при обжаривании какао-бобов.

При термической обработке  белков выше 200 °С или при более низких температурах, но в щелочной среде, протекают реакции изомеризации аминокислотных остатков из L- в   D-форму, что снижает усвояемость белков.

Среди продуктов термического распада белков встречаются соединения, обладающие мутагенными свойствами. Такие соединения образуются в белоксодержащей  пище при её обжаривании в масле, выпечке, копчении в дыму, сушке. Мутагенными  свойствами обладают продукты пиролиза аминокислот, образующиеся при температуре 500–600 °С.

В сильнощелочных средах, особенно при высоких температурах, в белках могут протекать реакции конденсации и образовываться различные поперечные связи, например:

 

L–NH–CH–CO–L        L–NH–CH–CO–L              L–NH–CH–CO–L      L–NH–CH–CO–L

               |                    +                  |                                               |                                     |


             CH2                                 CH3             – 2Н                   CH2                               CH2

               |                                                                                       |                                   |

              CH2                              Остаток                                      CH2 — СН2 — CH2 — NH

               |                                   аланина

              CH2                                                                                                 Лизилоаланил

               |

              CH2

               |

              NH2

  Остаток лизина

 

Было установлено, что  образование лизилоаланила стимулирует диарею и облысение. Образование подобных соединений снижает питательную ценность белков.

Белки могут окисляться продуктами окисления липидов. В свою очередь, окислительная порча липидов может начаться вследствие перемешивания, гомогенизации, замеса, ИК-обработки, ультразвуковой обработки сырья и полуфабрикатов. Предотвращение окислительной порчи липидов достигают добавлением антиоксидантов и другими способами.

При интенсивных воздействиях на белки также может происходить  их тепловая агрегация и деструкция, сопровождающаяся разрывом не только дисульфидных, но даже пептидных связей.

Таким образом, использование  новых и традиционных технологических  процессов без глубокого изучения их влияния на структуру белков неэффективно с точки зрения обеспечения качества пищевых продуктов и опасно для здоровья людей.

Примером научно обоснованного  подхода может служить применение аскорбиновой кислоты для улучшения  качества хлеба:

                                                       СН2ОН

                                                                  |

                                                          НО–С–Н О


 

                           ½ О2                                                         = О                            Г–S–S–Г




                                                                   НО            ОН

                                                                    Аскорбиновая

                                                              кислота

 

                                                        СН2ОН

                                                                  |

                                                          НО–С–Н О


 

                            Н2О                                                         = О                            2 Г–SН


 


                                                                       О           О

                                                              Дегидроаскорбиновая

                                                              кислота

 

Аскорбиновая кислота  окисляется кислородом воздуха до дегидроаскорбиновой  кислоты и окисляет восстановленный глутатион до Г–S–S–Г, который не может взаимодействовать с дисульфидными связями теста и разрывать их. В результате SН-группы клейковинных белков могут образовывать дисульфидные связи между собой, что приводит к укреплению клейковины и улучшению качества хлеба.

 

 

Методы  выделения и очистки белков

 

Белки, как известно, являются весьма лабильными соединениями и при  неблагоприятных воздействиях могут денатурировать, а следовательно, и утратить свою биологическую функцию. Поэтому при их выделении и очистке необходимо придерживаться ряда общих правил, позволяющих избежать денатурации выделяемого белка. Во-первых, все процедуры по выделению белков следует вести при температуре как можно более низкой. Во-вторых, в растворы белка рекомендуется добавлять вещества, связывающие ионы тяжёлых металлов (например, ЭДТА — этилендиаминтетраацетат), а также вещества, поддерживающие на низком уровне окислительно-восстановительный потенциал (цистеин, восстановленный глутатион и др.). В-третьих, следует избегать сильного разбавления белковых растворов, так как это может привести к нарушению четвертичной структуры белка. И, в-четвёртых, реакция среды в растворах, содержащих белок, не должна быть сильнокислой или сильнощелочной.

В процессе выделения и  очистки нужный белок отделяют от множества других содержащихся в клетках или ткани белков и небелковых соединений, исходя из таких его свойств, как размер его молекул, растворимость, изоэлектрическая точка, заряд и др. Выделение белка начинается с измельчения (гомогенизации) испытуемого материала (ткани, клеток). Затем проводится экстракция белков таким растворителем, который наиболее полно извлекает нужный белок. Для отделения белков от низкомолекулярных веществ можно использовать метод диализа. Путём осаждения органическими растворителями или солями (чаще всего сульфатом аммония) можно получить белковый осадок и затем его высушить лиофильным способом (в вакууме из замороженного состояния). Такой белковый препарат содержит смесь различных белков. Если необходимо получить белок в более чистом состоянии, применяют один или несколько методов разделения белков: электрофорез, изоэлектрическую фокусировку, гель-фильтрацию, ионообменную хроматографию и др.

Электрофорез. Этот метод разделения белков основан на том, что все они являются амфотерными электролитами и содержат положительно и отрицательно заряженные группировки, количество которых зависит от аминокислотного состава данного белка. В зависимости от величины и знака суммарного заряда, а также от размеров и формы молекулы разные белки передвигаются в электрическом поле с различной скоростью, на чём и основано их разделение.

Изоэлектрическая фокусировка  белков. Этим методом белки разделяются на основе различий их изоэлектрических точек. Смесь различных белков наносится на колонку, заполненную амфолинами — смесью полиаминополикарбоновых кислот, способной в электрическом поле создавать непрерывный градиент pH. При пропускании электрического тока белки передвигаются по колонке до тех пор, пока не попадут в зону pH, соответствующую их изоэлектрической точке. Там они останавливаются. Затем получившиеся отдельные фракции белков собирают путём их вымывания из колонки.

Гель-фильтрация. Разделение белков при использовании этого метода проводится на основе различий в размерах их молекул. Пробу наносят на колонку, заполненную мелкими пористыми гранулами высокогидратированного нерастворимого углеводного полимера — сефадекса. Молекулы белков, имеющие сравнительно небольшие размеры, проникают через поры внутрь этих гранул, в результате чего их прохождение через колонку замедляется, тогда как молекулы более крупных белков не могут проникнуть внутрь гранул и проходят через колонку значительно быстрее.

Ионообменная хроматография. Разделение белков в данном случае происходит на основе различий в плотности и знаке их заряда. Если в нейтральной среде (при pH 7) белок имеет положительный заряд, то он связывается на колонке с ионообменником, содержащим карбоксильные группы (катионообменником), тогда как отрицательно заряженные белки с ионообменником не связываются, а если белок имеет отрицательный заряд, то он связывается на колонке с ионообменником, содержащим органические основания (анионообменником), и в этом случае с ионообменником не связываются положительно заряженные белки. Связавшиеся с сорбентом белки снимают с колонки путём их вымывания конкурирующим за место связывания с сорбентом раствором соли. Те белки, у которых плотность заряда ниже, вымываются с колонки первыми, за ними следуют белки с более высокой плотностью заряда.

Аффинная хроматография. Данный метод разделения белков основан на принципе их избирательного взаимодействия со специфическими веществами, закреплёнными на носителе. Через колонку, заполненную сорбентом, пропускают смесь белков. При этом все белки, не взаимодействующие с сорбентом, проходят через колонку свободно, и только белок, взаимодействующий с сорбентом, адсорбируется на колонке и задерживается в ней. Этот метод позволяет отказаться от многостадийных, трудоёмких схем выделения и очистки белков и получать высокоочищенные, однородные фракции белков непосредственно из белковых экстрактов.

Применяя методы разделения белков с целью выделения какого-то одного специфического белка из смеси многих белков, необходимо иметь удобный способ контроля, который позволял бы определять эффективность каждой стадии их разделения. Например, при очистке фермента измеряют его каталитическую активность и тем самым отличают от всех других белков. Все операции по выделению и очистке белков контролируют по выходу белка и по его специфической активности.

 


Информация о работе Лекции по "Пищевой химии"