Лекция по "Физической и коллоидной химии"

Автор работы: Пользователь скрыл имя, 08 Апреля 2013 в 13:39, лекция

Описание работы

Предметом физической химии является объяснение химических явлений на основе более общих законов физики. Физическая химия рассматривает две основные группы вопросов:
1. Изучение строения и свойств вещества и составляющих его частиц;
2. Изучение процессов взаимодействия веществ.

Файлы: 1 файл

Лекции по физической химии.doc 3.doc

— 533.00 Кб (Скачать файл)

2.2   ФОТОХИМИЧЕСКИЕ РЕАКЦИИ

Передача энергии для активации  вступающих во взаимодействие молекул  может осуществляться либо в форме  теплоты (т. н. темновые реакции), либо в  виде квантов электромагнитного излучения. Реакции, в которых активация частиц является результатом их взаимодействия с квантами электромагнитного излучения видимой области спектра, называют фотохимическими реакциями. При всех фотохимических процессах выполняется закон Гротгуса:

Химическое превращение вещества может вызвать только то излучение, которое поглощается этим веществом.

Излучение, отражённое веществом, а  также прошедшее сквозь него, не вызывают никаких химических превращений. Иногда фотохимические процессы происходят под действием излучения, которое не поглощается реагирующими веществами; однако в таких случаях реакционная смесь должна содержать т.н. сенсибилизаторы. Механизм действия сенсибилизаторов заключается в том, что они поглощают свет, переходя в возбуждённое состояние, а затем при столкновении с молекулами реагентов передают им избыток своей энергии. Сенсибилизатором фотохимических реакций является, например, хлорофилл (см. ниже).

Взаимодействие света с веществом  может идти по трем возможным направлениям:

1. Возбуждение частиц (переход электронов на вышележащие орбитали):

A + hν   ––>  A*

2. Ионизация  частиц за счет отрыва электронов:

A + hν  ––>  A+ + e

3. Диссоциация молекул с образованием свободных радикалов (гомолитическая) либо ионов (гетеролитическая):

AB + hν  ––>  A• + B•

AB + hν  ––>  A+ + B

Между количеством лучистой энергии, поглощенной молекулами вещества, и  количеством фотохимически прореагировавших молекул существует соотношение, выражаемое законом фотохимической эквивалентности  Штарка-Эйнштейна:

Число молекул, подвергшихся первичному фотохимическому превращению, равно числу поглощенных веществом квантов электромагнитного излучения.

Поскольку фотохимическая реакция, как  правило, включает в себя и т.н. вторичные  процессы (например, в случае цепного  механизма), для описания реакции вводится понятие квантовый выход фотохимической реакции:

Квантовый выход фотохимической реакции  γ есть отношение числа частиц, претерпевших превращение, к числу  поглощенных веществом квантов  света.

Квантовый выход реакции может  варьироваться в очень широких пределах: от 10-3 (фотохимическое разложение метилбромида) до 106 (цепная реакция водорода с хлором); в общем случае, чем более долгоживущей является активная частица, тем с большим квантовым выходом протекает фотохимическая реакция.

Важнейшими фотохимическими реакциями  являются реакции фотосинтеза, протекающие  в растениях с участием хлорофилла:          

 

Процесс фотосинтеза составляют две стадии: световая, связанная с поглощением фотонов, и значительно более медленная темновая, представляющая собой ряд химических превращений, осуществляемых в отсутствие света. Суммарный процесс фотосинтеза заключается в окислении воды до кислорода и восстановлении диоксида углерода до углеводов:

СО2 + Н2О + hν   ––>   (СН2О) + О2,         ΔG° = 477.0 кДж/моль

Протекание данного окислительно-восстановительного процесса (связанного с переносом  электронов) возможно благодаря наличию  в реакционном центре хлорофилла Сhl донора D и акцептора A электронов; перенос электронов происходит в результате фотовозбуждения молекулы хлорофилла:

DChlA + hν   ––>   DChl*A  ––>   DChl+A–  ––>   D+ChlA

Возникающие в данном процессе заряженные частицы D+ и A принимают участие в дальнейших окислительно-восстановительных реакциях темновой стадии фотосинтеза.

2.3  КАТАЛИТИЧЕСКИЕ ПРОЦЕССЫ

Скорость химической реакции при  данной температуре определяется скоростью  образования активированного комплекса, которая, в свою очередь, зависит от величины энергии активации. Во многих химических реакциях в структуру активированного комплекса могут входить вещества, стехиометрически не являющиеся реагентами; очевидно, что в этом случае изменяется и величина энергии активации процесса. В случае наличия нескольких переходных состояний реакция будет идти в основном по пути с наименьшим активационным барьером.

Катализ – явление изменения  скорости химической реакции в присутствии  веществ, состояние и количество которых после реакции остаются неизменными. 

Различают положительный и отрицательный катализ (соответственно увеличение и уменьшение скорости реакции), хотя часто под термином "катализ" подразумевают только положительный катализ; отрицательный катализ называют ингибированием.

Вещество, входящее в структуру  активированного комплекса, но стехиометрически не являющееся реагентом, называется катализатором. Для всех катализаторов характерны такие общие свойства, как специфичность  и селективность действия.

Специфичность катализатора заключается в его способности ускорять только одну реакцию или группу однотипных реакций и не влиять на скорость других реакций. Так, например, многие переходные металлы (платина, медь, никель, железо и т.д.) являются катализаторами для процессов гидрирования; оксид алюминия катализирует реакции гидратации и т.д.

Селективность катализатора – способность ускорять одну из возможных при данных условиях параллельных реакций. Благодаря этому можно, применяя различные катализаторы, из одних и тех же исходных веществ получать различные продукты:

[Cu]:       СО + Н2   ––>   СН3ОН

[Al2О3]:  С2Н5ОН  ––> С2Н4 + Н2О

[Ni]:  СО + Н2   ––>   СН4 + Н2О

[Cu]:   С2Н5ОН  ––> СН3СНО + Н2


Причиной увеличения скорости реакции  при положительном катализе является уменьшение энергии активации при протекании реакции через активированный комплекс с участием катализатора (рис. 2.8).

Поскольку, согласно уравнению Аррениуса, константа скорости химической реакции  находится в экспоненциальной зависимости  от величины энергии активации, уменьшение последней вызывает значительное увеличение константы скорости. Действительно, если предположить, что предэкспоненциальные множители в уравнении Аррениуса (II.32) для каталитической и некаталитической реакций близки, то для отношения констант скорости можно записать:

           (II.44)

Если ΔEA = –50 кДж/моль, то отношение констант скоростей составит 2,7·106 раз (действительно, на практике такое уменьшение EA увеличивает скорость реакции приблизительно в 105 раз).

Необходимо отметить, что наличие  катализатора не влияет на величину изменения  термодинамического потенциала в результате процесса и, следовательно, никакой  катализатор не может сделать возможным самопроизвольное протекание термодинамически невозможного процесса (процесса, ΔG (ΔF) которого больше нуля). Катализатор не изменяет величину константы равновесия для обратимых реакций; влияние катализатора в этом случае заключается только в ускорении достижения равновесного состояния.

В зависимости от фазового состояния  реагентов и катализатора различают  гомогенный и гетерогенный катализ. 
 

 

Рис. 2.8  Энергетическая диаграмма химической реакции без катализатора (1) 
                 и в присутствии катализатора (2). 
 

2.3.1  Гомогенный катализ.

Гомогенный катализ – каталитические реакции, в которых реагенты и  катализатор находятся в одной фазе. В случае гомогенно-каталитических процессов катализатор образует с реагентами промежуточные реакционноспособные продукты. Рассмотрим некоторую реакцию

А  +  В  ––>  С

В присутствии катализатора осуществляются две быстро протекающие стадии, в результате которых образуются частицы промежуточного соединения АК и затем (через активированный комплекс АВК#) конечный продукт реакции с регенерацией катализатора:

А  + К   ––>   АК

АК  +  В   ––>   С + К

Примером такого процесса может  служить реакция разложения ацетальдегида, энергия активации которой EA = 190 кДж/моль:

СН3СНО  ––>   СН4 + СО

В присутствии паров йода этот процесс  протекает в две стадии:

СН3СНО + I2   ––>   СН3I + НI + СО

СН3I + НI  ––>   СН4 + I2

Уменьшение энергии активации  этой реакции в присутствии катализатора составляет 54 кДж/моль; константа скорости реакции при этом увеличивается  приблизительно в 105 раз. Наиболее распространенным типом гомогенного катализа является кислотный катализ, при котором в роли катализатора выступают ионы водорода Н+.

2.3.2      Автокатализ.

Автокатализ – процесс каталитического  ускорения химической реакции одним  из её продуктов. В качестве примера  можно привести катализируемую ионами водорода реакцию гидролиза сложных эфиров. Образующаяся при гидролизе кислота диссоциирует с образованием протонов, которые ускоряют реакцию гидролиза. Особенность автокаталитической реакции состоит в том, что данная реакция протекает с постоянным возрастанием концентрации катализатора. Поэтому в начальный период реакции скорость её возрастает, а на последующих стадиях в результате убыли концентрации реагентов скорость начинает уменьшаться; кинетическая кривая продукта автокаталитической реакции имеет характерный S-образный вид (рис. 2.9). 
 

  

Рис. 2.9  Кинетическая кривая продукта автокаталитической реакции 
 

2.3.3  Гетерогенный катализ.

Гетерогенный катализ – каталитические реакции, идущие на поверхности раздела фаз, образуемых катализатором и реагирующими веществами. Механизм гетерогенно-каталитических процессов значительно более сложен, чем в случае гомогенного катализа. В каждой гетерогенно-каталитической реакции можно выделить как минимум шесть стадий:

1.  Диффузия исходных веществ к поверхности катализатора.

2.  Адсорбция исходных веществ на поверхности с образованием некоторого промежуточного соединения:

А + В + К   ––>   АВК

3.  Активация адсорбированного состояния (необходимая для этого энергия есть истинная энергия активации процесса):

АВК   ––>   АВК#

4.  Распад активированного комплекса с образованием адсорбированных продуктов реакции:

АВК#   ––>   СDК

5.  Десорбция продуктов реакции с поверхности катализатора.

СDК   ––>   С + D + К

6.  Диффузия продуктов реакции от поверхности катализатора.

Специфической особенностью гетерокаталитических процессов является способность  катализатора к промотированию и  отравлению. 

Промотирование – увеличение активности катализатора в присутствии веществ, которые сами не являются катализаторами данного процесса (промоторов). Например, для катализируемой металлическим никелем реакции

СО + Н ––>   СН4 + Н2О

введение в никелевый катализатор  небольшой примеси церия приводит к резкому возрастанию активности катализатора.

Отравление – резкое снижение активности катализатора в присутствии некоторых веществ (т. н. каталитических ядов). Например, для реакции синтеза аммиака (катализатор – губчатое железо), присутствие в реакционной смеси соединений кислорода или серы вызывает резкое снижение активности железного катализатора; в то же время способность катализатора адсорбировать исходные вещества снижается очень незначительно.

Для объяснения этих особенностей гетерогенно-каталитических процессов Г.Тэйлором было высказано следующее предположение: каталитически активной является не вся поверхность катализатора, а лишь некоторые её участки – т.н. активные центры, которыми могут являться различные дефекты кристаллической структуры катализатора (например, выступы либо впадины на поверхности катализатора). В настоящее время нет единой теории гетерогенного катализа. Для металлических катализаторов была разработана теория мультиплетов. Основные положения мультиплетной теории состоят в следующем:

1. Активный центр катализатора представляет собой совокупность определенного числа адсорбционных центров, расположенных на поверхности катализатора в геометрическом соответствии со строением молекулы, претерпевающей превращение.

2. При адсорбции реагирующих  молекул на активном центре образуется мультиплетный комплекс, в результате чего происходит перераспределение связей, приводящее к образованию продуктов реакции.

Теорию мультиплетов называют иногда теорией геометрического подобия  активного центра и реагирующих молекул. Для различных реакций число адсорбционных центров (каждый из которых отождествляется с атомом металла) в активном центре различно – 2, 3, 4 и т.д. Подобные активные центры называются соответственно дублет, триплет, квадруплет и т.д. (в общем случае мультиплет, чему и обязана теория своим названием).

Например, согласно теории мультиплетов, дегидрирование предельных одноатомных  спиртов происходит на дублете, а  дегидрирование циклогексана – на секстете (рис. 2.10 – 2.11); теория мультиплетов позволила связать каталитическую активность металлов с величиной их атомного радиуса.

 Рис. 2.10  Дегидрирование спиртов на дублете

      Рис. 2.11  Дегидрирование циклогексана на секстете  

 

2.3.4  Ферментативный катализ.

Ферментативный катализ – каталитические реакции, протекающие с участием ферментов – биологических катализаторов белковой природы. Ферментативный катализ имеет две характерные особенности:

1. Высокая активность, на несколько порядков превышающая активность неорганических катализаторов, что объясняется очень значительным снижением энергии активации процесса ферментами. Так, константа скорости реакции разложения перекиси водорода, катализируемой ионами Fе2+, составляет 56 с-1; константа скорости этой же реакции, катализируемой ферментом каталазой, равна 3.5·107, т.е. реакция в присутствии фермента протекает в миллион раз быстрее (энергии активации процессов составляют соответственно 42 и 7.1 кДж/моль). Константы скорости гидролиза мочевины в присутствии кислоты и уреазы различаются на тринадцать порядков, составляя 7.4·10-7 и 5·106 с-1 (величина энергии активации составляет соответственно 103 и 28 кДж/моль).

Информация о работе Лекция по "Физической и коллоидной химии"