Модели образования фуллеренов

Автор работы: Пользователь скрыл имя, 16 Июня 2013 в 20:23, реферат

Описание работы

Экспериментальное обнаружение стабильного кластера С60 с икосаэдрической симметрией и в последующем богатого семейства фуллеренов явилось одним из самых ярких открытий последнего десятилетия. В 1996 г. за это выдающееся достижение Роберт Керл, Гарольд Крота и Ричард Смолли были удостоены Нобелевской премии. Удивительно, что после многих столетий использования различных форм углерода, после всестороннего исследования таких известных кристаллографических форм углерода, как алмаз и графит, была открыта принципиально новая форма этого вещества. Любопытно, что квантово-химические расчеты предсказали существование С60 на десять лет раньше.

Файлы: 1 файл

Фуллерены.DOC

— 69.00 Кб (Скачать файл)

Была предложена следующая схема роста и отжига углеродного кластера в плазме: цепочка - кольцо - трехмерный полициклический кластер-трансформация в фуллерен. Возможны, например, следующие способы образования трехмерных полициклических кластеров, рост и отжиг которых приводит к образованию фуллеренов: слипание кольца и цепочки, слипание колец, трансформация бициклических и трехциклических кластеров в полициклические кластеры. Предложенные способы возникновения полициклических кластеров изображены на схеме образования фуллерена (рис. 6). Первоначально для бициклических и трехциклических кластеров была предложена плоская структура (рис. 6а), причем расчетная подвижность таких кластеров соответствует экспериментальной. Однако позднее для бкциклическго и трехциклических кластеров была предложена трехмерная структура (рис. 7), причем подвижность таких кластеров также соответствует экспериментальной. Более того, кластеры такой структуры получаются также в результате квантово-химических расчетов процесса соединения двух колец. Предполагалось также, что трехциклические углеродные кластеры имеют структуру, аналогичную структуре основного состояния кластера C18, вычисленной с помощью квантового метода Монте-Карло (см. рис. 4).

Обсудим возможные пути образования  углеродных кластеров, которые отжигаются в фуллерены. Эти пути в отличие от различных моделей "сборки фуллеренов" не предусматривают определенной структуры для кластеров, котодые являются предшественниками фуллеренов. При абляции графита углеродные кластеры образуются в результате слипания атомов и микрокластеров, состоящих из нескольких атомов, что хорошо подтверждается расчетами кинетики. Заметим, что образование кластеров в углеродных парах может происходить либо как гомогенная нуклеация (образование зародышей жидкой фазы в метастабильном пересыщенном паре), либо как спиноидальный распад (разделение на фазы вещества, находящегося в термодинамически нестабильном состоянии). Другая возможность образования больших углеродных кластеров - слипание нескольких кластеров, состоящих из десятков атомов. Такой процесс происходит, например, при абляции высших оксидов углерода. Масс-спектр углеродных кластеров, полученных при абляции сажи, указывает на возможность сосуществования этих двух путей образования больших углеродных кластеров. Этот масс-спектр имеет два максимума в распределении фуллеренов. Первый максимум (n = 154) соответствует образованию в результате слипания атомов и микрокластеров, второй (n = 450- 500) в результате слипания кластеров, содержащих десятки атомов. Фуллерены образуются также из изначально больших кластеров, испаренных из материала, содержащего углерод. Это происходит, например, при испарении мелкодисперсной графитовой фольги или вторичной лазерной абляции того же самого участка поверхности графита.

Две возможности  были предложены для процесса отжига углеродного кластера в  фуллерен: постепенная трансформация полициклического кластера через последовательность реакций перехода одного изомера в другой и кристаллизация жидкого кластера. Были проведены расчеты постепенной трансформации в фуллерен для плоского трехциклического кластера C60 (рис. 8) и трехмерного трехциклического кластера С36 (рис. 9 и 10). При трансформации плоского трехциклического кластера получается очень вытянутый фуллерен С60 с множеством дефектов - с семиугольниками и соприкасающимися пятиугольниками. Более того, расчетное время трансформации более > 10-3 сильно зависит от начальной структуры трехциклического кластера и даже для такого "дефектного фуллерена превышает экспериментальное время образования фуллеренов. При трансформации трехмерного трехциклического кластера

Модель трансформации полициклического кластера в фуллерен не предусматривает испускание атомов и микрокластеров во время этого процесса. Однако, как упомянуто выше, на испускание атомов и микрокласте- ров во время отжига углеродного кластера в фуллерен указывает ряд экспериментов. Испускание атомов и микрокластеров возможно из жидкого кластера. В силу приведенных аргументов мы считаем, что кристаллизация жидкого кластера является более вероятным путем трансформации кластеров в фуллерен, чем постепенная трансформация полициклического кластера. Тем не менее, мы полагаем, что возможен кроссовер от одного поведения к другому в зависимости от начальной температуры кластера и времени отжига.

Итак, мы считаем, что образование  фуллеренов происходит в следующем порядке: сначала образуются жидкие углеродные кластеры, затем эти кластеры кристаллизуются в фуллерены с испусканием атомов и микрокластеров. Используем этот сценарий для объяснения ряда экспериментальных фактов.

1. Исследования  ЯМР фуллеренов С60, обогащенных изотопом 13С, показывают, что атомы 13С, бывшие соседями в аморфном углероде, не являются ими в фуллеренах. Этот факт означает либо отсутствие С2, С3 и других микрокластеров среди продуктов испарения аморфного углерода, либо, в соответствии с обсуждаемой моделью кристаллизации жидкого кластера в фуллерен, перемешивание атомов в жидком кластере до его кристаллизации.

2. В ряде экспериментов  для углеродных кластеров, содержащих 30-40 атомов, наблюдается "мертвая  область" в масс-спектре с очень малым количеством кластеров. Было предположено, что кластеры из "мертвой области" распадаются с испусканием кластеров, содержащих более 10 атомов. Мы предлагаем другое обмеление "мертвой области". Фуллерены, содержащие 30-40 атомов, имеют меньшую энергию связи, приходящуюся на один атом, чем фуллерены большего размера. Поэтому кластеры, содержащие 30-40 атомов, имеют меньшую температуру кристаллизации, позднее кристаллизуются в фуллерены при остывании плазмы и, следовательно, у них есть больше времени для роста в большие кластеры, что приводит к существенному уменьшению количества кластеров, соответствующих "мертвой области" масс-спектра. Такое объяснение подтверждается расчетами кинетики возникновения углеродных кластеров. Не исключена также возможность, что "мертвая область" возникает в результате роста фуллеренов после их образования.

3. Были предложены особые  пути сборки металло- фуллеренов с атомом металла внутри. Мы предлагаем простое объяснение: атом оказывается внутри фуллерена в процессе кристаллизации жидкого кластера.

Было обнаружено, что атомы  инертных газов могут попадать внутрь фуллеренов после образования последних. Механизм "открывания окна" был предложен для объяснения этого эксперимента: связи между атомами фуллерена перестраиваются на короткое время, образуя вместо шестичленного кольца кольцо большего размера, через которое атом инертного газа проникает внутрь.


Информация о работе Модели образования фуллеренов