Автор работы: Пользователь скрыл имя, 11 Апреля 2013 в 17:04, доклад
В главную подгруппу V-ой группы входят азот, фосфор, мышьяк, сурьма и висмут. Азот, фосфор и мышьяк являются неметаллами, сурьма и висмут – металлы. Согласно строению внешнего электронного слоя атомов - это типичные р-элементы:
N [He]2s22p3,
P [Ne]3s23p33d0,
As [Ar]3d104s24p34d0,
Sb [Kr]4d105s25p35d0,
Bi [Xe]4f145d106s26p36d0.
Получают Bi2O3 термическим разложением нитрата висмута(III):
2Bi(NO3)3 Þ 2Bi2O3 + 2NO2 + O2.
Гидроксид висмута(III) имеет переменный состав, но ему обычно приписывают формулу Bi(OH)3. Это белое малорастворимое в воде вещество, при нагревании отщепляет воду, превращаясь в оксид. Гидроксид висмута(III) является основанием с очень слабо выраженными амфотерными свойствами.
В растворах соли Bi3+ устойчивы только в присутствии избытка соответствующих кислот. При рН 2 - 4 они гидролизуются, образуя основные соли, содержащие многоядерные катионы:
6Bi3+ + 8H2O Û [Bi6O4(OH)4]6+ + 12H+.
Соли оксо-гидроксокомплекса висмута(III), могут быть выделены в твёрдом виде, например, нитрат - [Bi6O4(OH)4](NO3)6×H2O, которому ранее приписывали формулу (BiO)NO3×0,5H2O.
В присутствии галогенид-ионов соли Bi3+ гидролизуются с образованием малорастворимых осадков оксогалогенидов висмута(III):
Bi3+ + Cl- + H2O Û BiOCl¯+ 2H+.
Гидроксид висмута(III), в отличие от гидроксида сурьмы(III), проявляет слабые окислительные свойства и может быть восстановлен соединениями олова(II):
2Bi(OH)3 + 3Na2[Sn(OH)4] Þ 2Bi¯+ 3Na2[Sn(OH)6].
Эта реакция используется в аналитической химии для обнаружения ионов висмута(III). Кроме того, ионы Bi3+ можно определить по образованию растворимого комплекса жёлтого цвета с тиомочевиной:
Bi3+ + 3SC(NH2) Þ [Bi(SC(NH2))3]3+.
Гидроксид висмута(III) получают приливанием раствора нитрата висмута(III) к раствору щёлочи:
3NaOH + Bi(NO3)3 Þ Bi(OH)3¯+ 3NaNO3.
При обратном порядке сливания растворов осаждается малорастворимая основная соль:
Bi(NO3)3 + 2NaOH Þ (BiO)NO3¯ + 2NaNO3 + H2O.
Оксид мышьяка(V) - As2O5 - гигроскопичное белое стекловидное вещество, похожее на оксид фосфора(V). При нагревании выше 3150С разлагается:
As2O5 Þ As2O3 + O2.
Это кислотный оксид и при растворении в воде образует ортомышьяковую кислоту:
As2O5 + 3H2O Þ 2H3AsO4.
Получают мышьяковый ангидрид из H3AsO4 осторожным нагреванием при температуре 280-3000С:
2H3AsO4 Þ As2O5 + 3H2O.
Ортомышьяковая кислота - H3AsO4 - кристаллическое вещество белого цвета (tпл.=35,50С), очень гигроскопичное и хорошо растворимое в воде. По строению и кислотным свойствам напоминает ортофосфорную кислоту: Кa1=6,3×10-3, Кa2=1,2×10-7, Кa3=3,2×10-12. H3AsO4 образует три ряда солей - ортоарсенатов - изоморфных соответствующим ортофосфатам, например Na3AsO4, Na2HAsO4, NaH2AsO4. По поведению в водных растворах (гидролиз, реакции осаждения) средние и кислые соли мышьяковой кислоты аналогичны фосфатам. Так соли магния в присутствии NH4OH и NH4Cl образуют растворимый в кислотах белый кристаллический осадок MgNH4AsO4×6H2O, подобный MgNH4PO4×6H2O. С «молибденовой жидкостью» и ортоарсенаты и ортофосфаты образуют жёлтые кристаллические осадки солей гетерополикислот: (NH4)3H4[As(Mo2O7)6], (NH4)3H4[P(Mo2O7)6]. Отличить арсенаты от фосфатов можно реакцией с нитратом серебра(I): выделяющийся осадок Ag3AsO4 имеет шоколадно-бурый цвет, а Ag3PO4 – жёлтый.
При нагревании, по мере повышения температуры, H3AsO4 превращается в димышьяковую кислоту, затем в полимерную метамышьяковую кислоту, с образованием в конечном итоге As2O5:
Ортомышьяковая кислота, в отличие от H3PO4, проявляет слабые окислительные свойства (Е0(H3AsO4/H3AsO3)=+0,56 В):
H3AsO4 + 2KI + H2SO4 Û H3AsO3 + I2 + K2SO4 + H2O.
Это одна из немногих обратимых
окислительно-
Получают H3AsO4 взаимодействием элементарного мышьяка или As2O3 с концентрированной азотной кислотой:
As2O3 + 2HNO3 + 2H2O Þ NO2 + NO + 2H3AsO4.
Оксид сурьмы(V) – Sb2O5 – бледно-жёлтый порошок, малорастворимый в воде (0,2 г в 100 мл H2O при 200С). Это кислотный оксид – его водный раствор имеет кислую реакцию. При нагревании (t>3500C) оксид сурьмы(V) разлагается с образованием смешанного оксида сурьмы(III,V) – Sb2O4:
2Sb2O5 Þ 2Sb2O4 + O2.
При растворении Sb2O5 в растворах щелочей образуются гидроксокомплексы:
Sb2O5 + 2NaOH + 5H2O Þ 2Na[Sb(OH)6].
Соединения сурьмы(V) проявляют окислительные свойства, поэтому при взаимодействии Sb2O5 c концентрированной соляной кислотой протекает обратимая окислительно-восстановительная реакция:
Sb2O5 + 16HCl Û 2H3[SbCl6] + 2Cl2 + 5H2O.
Сплавлением Sb2O5 с оксидами металлов получаются соли стибаты (антимонаты) как мета-, так и орто-форм, например, NaSbO3, AlSbO4.
Получают Sb2O5 обезвоживанием сурьмяной кислоты:
2H3SbO4 Þ Sb2O5 + 3H2O.
Сурьмяная кислота – Sb2O5×nH2O (условная формула: H3SbO4) – плохо растворимый в воде белый порошок, который получают окислением металлической сурьмы концентрированной азотной кислотой:
2Sb + 2nHNO3 Þ Sb2O5×nH2O¯ + 2nNO2,
либо гилролизом SbCl5 при нагревании:
2SbCl5 + (5+n)H2O Þ Sb2O5×nH2O¯ + 10HCl.
При нагревании (t<4000C) кислота переходит в оксид сурьмы(V). Растворением сурьмяной кислоты в концентрированных растворах щёлочи получают стибаты (антимонаты), которые существуют в форме гексагидроксостибат-ионов [Sb(OH)6]–:
Sb2O5×nH2O + 2NaOH +(5–n)H2O Û 2Na[Sb(OH)6].
В слабощелочной среде в результате реакций поликонденсации образуются
многоядерные
Оксид висмута(V) – Bi2O5 – красно-коричневое твёрдое вещество, можно получить взаимодействием Bi2O3 с озоном. Bi2O5 очень плохо растворяется в воде, при нагревании разлагается с постепенным отщеплением кислорода:
2Bi2O5 Þ 2Bi2O4 + O2, 2Bi2O4 Þ 2Bi2O3 + O2.
Достоверные данные о существовании гидроксида висмута(V) отсутствуют. Однако окислением соединений висмута(III) в щелочной среде сильными окислителями можно получить соединения висмута(V) неопределённого состава – висмутаты, которым для простоты приписывают условную формулу MIBiO3:
Bi2O3 + 2Na2O2 Þ 2NaBiO3 + Na2O,
Bi2O3 + 6NaOH + 2Br2 Þ 2NaBiO3¯+ 4NaBr + 3H2O.
Оксид висмута(V) и висмутаты –
сильные окислители. Стандартный
окислительно-
2Mn(NO3)2 + 5NaBiO3 + 16HNO3 Þ 2HMnO4 + 5Bi(NO3)3 + 5NaNO3 + 7H2O.
Соединения с галогенами занимают важное место в химии висмута, сурьмы и в особенности мышьяка. Мышьяк, сурьма и висмут(III) образуют фториды, хлориды, бромиды и иодиды, а из соединений висмута(V) получены только фториды. Галогениды ЭHal3 и ЭHal5 по своей природе являются галогенангидридами, но отличаются некоторыми особенностями в реакциях с водой. Физические свойства соединений приведены в таблице 2. В газовой фазе молекулы тригалогенидов имеют строение тригональной пирамиды (sp3-гибридизация орбиталей центрального атома):
Пентагалогениды в газовой фазе (a) состоят из молекул ЭF5, имеющих форму тетрагональной пирамиды (sp3d2-гибридизация), а в жидком и твёрдом состоянии (b) – из полимерных молекул – цепочек октаэдров с общими вершинами:
Таблица 2. Свойства галогенидов мышьяка, сурьмы и висмута.
Вещество |
Физическое Состояние |
Растворимость в воде |
Температура плавлен., 0С |
Температура кипения, 0С |
AsF5 |
бесцв. Газ |
растворимо |
–78,9 |
–52,8 |
AsCl5 |
бесцв. жидкость |
разлагается |
–40 |
разл. |
SbF5 |
бесцв. жидкость |
растворимо |
6 |
149,5 |
SbCl5 |
лим.-жёлт. жидкость |
растворимо |
4,0 |
140 |
SbI5 |
коричн. твёрд. в-во |
разлагается |
79 |
разл. до 1300 |
BiF5 |
белые кристаллы |
гидролизуется |
550 возгон. | |
AsF3 |
бесцв. жидкость |
Раств., гидролиз. |
–5,9 |
57,8 |
AsCl3 |
бесцв. жидкость |
растворимо |
–16 |
130 |
AsBr3 |
бесцв. кристаллы |
растворимо |
31,2 |
221 |
AsI3 |
красн. кристаллы |
растворимо |
141 |
371 |
SbF3 |
бесцв. кристаллы |
Раств. и гидролиз. |
291 |
318 |
SbCl3 |
бесцв. кристаллы |
988 г в 100г воды при 250С |
72,3 |
221 |
SbBr3 |
бесцв. кристаллы |
Раств., гидролиз. |
97 |
280 |
SbI3 |
красн. кристаллы |
Раств., гидролиз. |
170 |
400 |
BiF3 |
бесцв. кристаллы |
Плохо раств. |
730 |
|
BiCl3 |
бесцв. кристаллы |
гидролизуется |
232 |
441 |
BiBr3 |
оранж. кристаллы |
гидролизуется |
218 |
461 |
BiI3 |
чёрн. кристаллы |
малорастворим |
407 |
439 возгон. |
Наличие вакантных d-орбиталей у центральных атомов делает эти вещества сильнейшими кислотами Льюиса, поэтому ЭHal3 и ЭHal5 способны присоединять молекулы воды и галогенид-ионы с образованием комплексных соединений:
SbCl5 + H2O Û [SbCl5(H2O)] Û H+ + [SbCl5(OH)]–,
SbCl5 + HCl Û H[SbCl6] Û H+ + [SbCl6]–,
SbCl5 + NaCl Û Na[SbCl6] Û Na+ + [SbCl6]–,
AsCl3 + NaCl Þ Na[AsCl4],
BiI3 + KI Û K[BiI4].
Следует отметить, что растворением в плавиковой кислоте SbF5 можно существенно увеличить её кислотность:
HF + SbF5 Û H+ + [SbF6]–.
Смесь, состоящая из SbF5 и фторсульфоновой кислоты HSO3F, называется «сверхкислотой» и по кислотности превосходит серную в 1012 раз. Сверхкислота способна протонировать галогены, серу и даже алканы:
SbF5 + HSO3F Û H[SbF5(SO3F)],
C(CH3)4 + H[SbF5(SO3F)] Û [C(CH3)3]+[SbF5(SO3F)]– + CH4.
Гидролиз тригалогенидов имеет особенности, связанные с природой элемента. Так, при взаимодействии с водой галогенидов мышьяка(III), образуются кислоты, но, в отличие от PHal3, гидролиз AsHal3 обратим:
AsCl3 + 3H2O Û H3AsO3 + 3HCl,
и из крепких солянокислых
растворов при кипячении
Тригалогениды сурьмы и висмута в небольшом количестве воды растворяются, при этом образуются прозрачные растворы. Чрезвычайно высокая растворимость SbCl3 (см. табл.2) позволяет предположить, что в концентрированных растворах трихлорида сурьмы находятся аквохлоридные комплексы типа [SbCl3(H2O)] и [SbCl3(H2O)3]. При разбавлении растворов SbCl3 и BiCl3 выделяются белые малорастворимые вещества - оксохлориды SbOCl* и BiOCl. По-видимому, их образованию предшествует целый ряд процессов - реакции замещения хлорид-ионов на воду (акватация):
[Sb(H2O)3Cl3] + H2O Û [Sb(H2O)4Cl2]+ + Cl-,
[Sb(H2O)4Cl2]+ + H2O Û [Sb(H2O)5Cl]2+ + Cl-,
и кислотно-основные взаимодействия - отщепление протона от координированных молекул воды с образованием гидроксокомплексов:
[Sb(H2O)5Cl]2+ + H2O Û [Sb(H2O)4(OH)Cl]+ + H3O+,
[Sb(H2O)4(OH)Cl]+ + H2O Û [Sb(H2O)3(OH)2Cl]0 + H3O+.