Автор работы: Пользователь скрыл имя, 11 Декабря 2012 в 20:16, контрольная работа
Грибы относятся к царству Mycota, которое делится на два отдела в зависимости от наличия жесткой клеточной стенки: отдел Myxomycota (слизевики) и отдел Eumycota (истинные грибы).
В пищевой промышленности встречаются главным образом представители истинных грибов, классификация которых базируется на трех признаках:
1. Строение мицелия.
2. Наличие полового способа размножения.
1 (8). Характеристика отдельных представителей пищевых грибов – возбудителей порчи пищевых продуктов............................................................3
2 (13). Целлюлоза, ее распространение и роль в природе, содержание в основных видах пищевого сырья и готовой продукции. Свойства целлюлозы....……………………………………………………..……........…......8
3 (23). Минеральные вещества, их классификация, значение для организма человека. Содержание минеральных веществ в зерне, плодах, овощах, других продуктах…………………………………………………………………………12
4 (38). Микрофлора зерна и муки. Виды порчи, меры по их предупреждению……………………………………………………….………..20
Список использованных источников……..………………………....…….…....27
При чрезмерно низком осмотическом давлении внешней среды может наступить плазмоптис клетки – явление, обратное плазмолису, когда вследствие высокой разности осмотических давлений цитоплазма быстро переполняется водой. Это может привести к разрыву клеточной оболочки, что наблюдается, например, при помещении бактерий в дистиллированную воду.
Второй путь поступления веществ в клетку – активный – путём переноса их особыми, локализованными в цитоплазматической мембране веществами ферментной природы. Эти переносчики, называемые пермеазами, обладают субстратной специфичностью. Каждый транспортирует только определённое вещество, имеющее сходную с белком-переносчиком стереохимическую структуру молекулы. На внешней стороне цитоплазматической мембраны переносчик адсорбирует вещество – вступает с ним во временную связь и диффундирует комплексно через мембрану, отдавая на внутренней стороне её транспортируемое вещество в цитоплазму. Вещество может поступать и тогда, когда концентрация его в клетке больше, чем в среде. При таком переносе веществ затрачивается энергия. При этом транспортируемое вещество может подвергнуться изменению, например из не растворимого в мембране переходит в растворимое состояние.
Цитоплазматическая мембрана, таким образом, является не только осмотическим барьером, но и обладает избирательной проницаемостью.
3 (23). Влияние физических факторов на микроорганизмы. Использование физических факторов для регулирования жизнедеятельности микроорганизмов
Жизнедеятельность микроорганизмов тесно связана с окружающей средой.
С одной стороны, деятельность микроорганизмов значительно изменяет окружающую среду в результате удаления из нее питательных веществ и выделения продуктов обмена. С другой стороны, интенсивность обменных процессов зависит от условий окружающей среды.
Воздействие каждого
фактора внешней среды
Кроме того, при оценке воздействия некоторых внешних факторов различают три кардинальные точки: минимум, оптимум и максимум. Развитие микроорганизмов возможно между минимальной и максимальной границами. При оптимальных условиях жизнедеятельность микроорганизма проявляется наиболее интенсивно.
Закон минимума: если хотя бы один фактор воздействия будет находиться ниже минимума или выше максимума, микроорганизм не сможет развиваться даже при оптимальных значениях всех остальных факторов.
Внешние факторы можно также разделить в зависимости от их природы на: физические – воздействие температуры, лучистой энергии, электромагнитных колебаний; физико-химические – влияние влажности, осмотического давления; химические – влияние рН, окислительно-восстановительных условий среды, химических факторов; биологические – взаимоотношения между микроорганизмами, влияние антибиотиков и фитонцидов.
Температура – один из основных факторов, определяющих возможность и интенсивность размножения микроорганизмов.
Микроорганизмы могут расти и проявлять свою жизнедеятельность в определенном температурном диапазоне и в зависимости от отношения к температуре делятся на психрофилы, мезофилы и термофилы. Температурные диапазоны роста и развития микроорганизмов этих групп приведены в таблице 1.
Таблица 1 - Деление микроорганизмов на группы в зависимости
от отношения к температуре
Группа микроорганизмов |
Т(°С) миним. |
Т(°С) максим. |
Т(°С) оптим. |
Отдельные представители |
1. Психрофилы (холодолюбивые) |
(+10)- (-2) |
Около +30 |
10-15 |
Бактерии, обитающие в холодильниках, морские бактерии |
2. Мезофилы |
5-10 |
45-50 |
25-40 |
Большинство грибов, дрожжей, бактерий |
3. Термофилы (теплолюбвые) |
около 30 |
70-80 |
50-60 |
Бактерии, обитающие в горячих источниках. Большинство образуют устойчивые споры |
Разделение микроорганизмов на 3 группы весьма условно, так как микроорганизмы могут приспосабливаться к несвойственной им температуре.
Температурные
пределы роста определяются терморезистентностью
ферментов и клеточных
Среди мезофилов встречаются формы
с высоким температурным
Действие высоких температур на микроорганизмы. Повышение температуры выше максимальной может привести к гибели клеток. Гибель микроорганизмов наступает не мгновенно, а во времени. При незначительном повышении температуры выше максимальной микроорганизмы могут испытывать «тепловой шок» и после недлительного пребывания в таком состоянии они могут реактивироваться.
Механизм губительного действия высоких температур связан с денатурацией клеточных белков. На температуру денатурации белков влияет содержание в них воды (чем меньше воды в белке, тем выше температура денатурации). Молодые вегетативные клетки, богатые свободной водой, погибают при нагревании быстрее, чем старые, обезвоженные.
Термоустойчивость – способность микроорганизмов выдерживать длительное нагревание при температурах, превышающих температурный максимум их развития.
Гибель микроорганизмов
Высокая термоустойчивость термофилов связана с тем, что, во первых, белки и ферменты их клеток более устойчивы к температуре, во вторых, в них содержится меньше влаги. Кроме того, скорость синтеза различных клеточных структур у термофилов выше скорости их разрушения.
Термоустойчивость спор бактерий связана с малым содержанием в них свободной влаги, многослойной оболочкой, в состав которой входит кальциевая соль дипиколиновой кислоты.
На губительном действии высоких температур основаны различные методы уничтожения микроорганизмов в пищевых продуктах. Это кипячение, варка, бланширование, обжарка, а также стерилизация и пастеризация. Пастеризация – процесс нагревания до 100˚С при котором происходит уничтожение вегетативных клеток микроорганизмов. Стерилизация – полное уничтожение вегетативных клеток и спор микроорганизмов. Процесс стерилизации ведут при температуре выше 100 °С.
Влияние низких температур на микроорганизмы. К низким температурам микроорганизмы более устойчивы, чем к высоким. Несмотря на то, что размножение и биохимическая активность микроорганизмов при температуре ниже минимальной прекращаются, гибели клеток не происходит, т.к. микроорганизмы переходят в состояние анабиоза (скрытой жизни) и остаются жизнеспособными длительное время. При повышении температуры клетки начинают интенсивно размножаться.
Причинами гибели микроорганизмов при действии низких температур являются:
• нарушение обмена веществ;
• повышение осмотического
• в клетках могут образоваться кристаллики льда, разрушающие клеточную стенку.
Низкая температура
Лучистая энергия. В природе микроорганизмы постоянно подвергаются воздействию солнечной радиации. Свет необходим для жизнедеятельности фототрофов. Хемотрофы могут расти и в темноте, а при длительном воздействии солнечной радиации эти микроорганизмы могут погибнуть.
Воздействие лучистой энергии подчиняется законам фотохимии: изменения в клетках могут быть вызваны только поглощенными лучами. Следовательно, для эффективности облучения имеет значение проникающая способность лучей, которая зависит от длины волны и дозы.
Доза облучения, в свою очередь, определяется интенсивностью и временем воздействия. Кроме того, эффект воздействия лучистой энергии зависит от вида микроорганизма, характера облучаемого субстрата, степени обсемененности его микроорганизмами, а также от температуры.
Низкие интенсивности видимого света (350–750 нм) и ультрафиолетовых лучей (150–300 нм), а также низкие дозы ионизирующих излучений либо не влияют на жизнедеятельность микроорганизмов, либо приводят к ускорению их роста и стимуляции метаболических процессов, что связано с поглощением квантов света определенными компонентами или веществами клеток и переходом их в электронно-возбужденное состояние.
Более высокие дозы излучений вызывают торможение отдельных процессов обмена, а действие ультрафиолетовых и рентгеновских лучей может привести к изменению наследственных свойств микроорганизмов - мутациям, что широко используется для получения высокопродуктивных штаммов.
Гибель микроорганизмов под действием ультрафиолетовых лучей связана:
• с инактивацией клеточных ферментов;
• с разрушением нуклеиновых кислот;
• с образованием в облучаемой среде перекиси водорода, озона и т.д.
Следует отметить, что наиболее устойчивыми к действию ультрафиолетовых лучей являются споры бактерий, затем споры грибов и дрожжей, далее окрашенные (пигментированные) клетки бактерий. Наименее устойчивы вегетативные клетки бактерий.
Гибель микроорганизмов под действием ионизирующих излучений вызвана:
• радиолизом воды в клетках и субстрате. При этом образуются свободные радикалы, атомарный водород, перекиси, которые, вступая во взаимодействие с другими веществами клетки, вызывают большое количество реакций, не свойственных нормально живущей клетке;
• инактивацией ферментов, разрушением мембранных структур, ядерного аппарата.
Радиоустойчивость различных микроорганизмов колеблется в широких пределах, причем микроорганизмы значительно радиоустойчивей высших организмов (в сотни и тысячи раз). Наиболее устойчивы к действию ионизирующих излучений споры бактерий, затем грибы и дрожжи и далее бактерии.
Губительное действие ультрафиолетовых
и рентгеновских γ-лучей
Ультрафиолетовыми лучами дезинфицируют воздух холодильных камер, лечебных и производственных помещений, используют бактерицидные свойства ультрафиолетовых лучей для дезинфекции воды.
Обработка пищевых продуктов низкими дозами гамма-излуче-ний называется радуризацией.
Электромагнитные колебания и ультразвук. Радиоволны - это электромагнитные волны, характеризующиеся относительно большой длиной (от миллиметров до километров) и частотами от 3·104 до 3·1011 герц.
Прохождение коротких и ультрарадиоволн через среду вызывает возникновение в ней переменных токов высокой (ВЧ) и сверхвысокой частоты (СВЧ). В электромагнитном поле электрическая энергия преобразуется в тепловую.
Гибель микроорганизмов
в электромагнитном поле высокой
интенсивности наступает в
В последние годы сверхвысокочастотная электромагнитная обработка пищевых продуктов все более широко применяется в пищевой промышленности (для варки, сушки, выпечки, разогревания, размораживания, пастеризации и стерилизации пищевых продуктов). По сравнению с традиционным способом тепловой обработки время нагревания СВЧ-энергией до одной и той же температуры сокращается во много раз, в связи с чем полнее сохраняются вкусовые и питательные свойства продукта.
Ультразвук. Ультразвуком называют механические колебания с частотами более 20 000 колебаний в секунду (20 кГц).
Природа губительного действия ультразвука на микроорганизмы связана:
• с кавитационным эффектом. При распространении в жидкости УЗ-волн происходит быстро чередующееся разряжение и сжатие частиц жидкости. При разряжении в среде образуются мельчайшие полые пространства – «пузырьки», заполняющиеся парами окружающей среды и газами. При сжатии, в момент захлопывания кавитационных «пузырьков», возникает мощная гидравлическая ударная волна, вызывающая разрушительное действие;
• с электрохимическим действием УЗ-энергии. В водной среде происходит ионизация молекул воды и активация растворенного в ней кислорода. При этом образуются вещества, обладающие большой реакционной способностью, которые обуславливают ряд химических процессов, неблагоприятно действующих на живые организмы.
Благодаря специфическим свойствам ультразвук все более широко применяют в различных областях техники и технологии многих отраслей народного хозяйства. Ведутся исследования по применению УЗ-энергии для стерилизации питьевой воды, пищевых продуктов (молока, фруктовых соков, вин), мойки и стерилизации стеклянной тары.