Методы дезинтеграции

Автор работы: Пользователь скрыл имя, 15 Января 2015 в 17:44, курсовая работа

Описание работы

Для получения метаболита, не накапливающегося в среде в обычных условиях в заметных количествах, часто требуются особые приемы радикального воздействия на клетки. Сущность этих приемов заключается в «дезорганизации» нормально функционирующих систем клетки с целью вычленения их отдельных участков. Одним из способов такой дезорганизации является повреждение в той или иной степени клеток микроорганизмов, от простого высушивания до глубокой дезинтеграции клеточных структур.

Содержание работы

Введение
3
1. Структура клетки
4
1.1 Устройство и функции клеточной мембраны
9
2. Понятие дезинтеграции клеток и её цели
11
3. Методы дезинтеграции
12
3.1 Физические методы
12
3.2 Химические методы
17
3.3 Химико-ферментативные методы
18
Заключение
20
Список литературы

Файлы: 1 файл

kursach (5).docx

— 95.00 Кб (Скачать файл)

Содержание

 

Введение

3

1. Структура клетки

4

1.1 Устройство и функции  клеточной мембраны

9

2. Понятие дезинтеграции  клеток и её цели

11

3. Методы дезинтеграции

12

3.1 Физические методы

12

3.2 Химические методы

17

3.3 Химико-ферментативные  методы

18

Заключение

20

Список литературы

21

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Введение

 

Для получения метаболита, не накапливающегося в среде в обычных условиях в заметных количествах, часто требуются особые приемы радикального воздействия на клетки. Сущность этих приемов заключается в «дезорганизации» нормально функционирующих систем клетки с целью вычленения их отдельных участков. Одним из способов такой дезорганизации является повреждение в той или иной степени клеток микроорганизмов, от простого высушивания до глубокой дезинтеграции клеточных структур.

Дезинтеграция – это процесс необратимого нарушения анатомической целостности клеток. С практической точки зрения необходимым и достаточным является разрыв клеточной оболочки, который может быть вызван различными повреждающими факторами: физическими, механическими, химическими, энзиматическими, биологическими. В природных условиях дезинтеграция клеток и клеточных систем вызывается внутриклеточными (внутренними) и внешними причинами. К внутренним причинам можно отнести факторы генетической природы. К различным внешним воздействиям можно отнести физические, физико-химические, химические и биологические факторы. Причем любой из этих факторов при достаточной интенсивности и продолжительности может стать дезинтегрирующим. Вызванную действием внутренних факторов дезинтеграцию обычно определяют как естественную.

Наряду с естественной дезинтеграцией бывает искусственная (насильственная) дезинтеграция. Последняя целенаправленно применяется человеком и часто используется в научной и производственной деятельности.

При этом основной задачей дезинтеграции является извлечение функционально активных структур и биополимеров.

В настоящее время можно определить три направления практического применения методов искусственной дезинтеграции клеточных систем:

1.Дезинтеграция биомассы (животной, растительной, микробной) для производства продуктов пищевого, кормового и технического назначения.

2.Дезинтеграция как способ стерилизации  и инактивации живых систем.

3.Дезинтеграция как инструмент  для направленного разрушения клеток и клеточных структур.

 

 

 

 

1.Структура  клетки

 

Бактериальная клетка (рис. 1) состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и ядерного аппарата, называемого нуклеоидом. Имеются другие структуры: мезосома, хроматофоры, тилакоиды, вакуоли, включения полисахаридов, жировые капельки, капсула (микрокапсула, слизь), жгутики, пили. Некоторые бактерии способны образовывать споры.

Рис. 1.Схема строения  бактериальной клетки

1 – клеточная оболочка; 2 – цитоплазма; 3 – цитоплазматическая мембрана; 4 – ядерное вещество; 5 – рибосомы; 6 – жировые капельки; 7 – мезосома; 8 – капсула; 9 – гранулы полисахарида; 10 – жгутики.

 

Структуру и морфологию бактерий изучают с помощью различных методов микроскопии: световой, фазово-контрастной, интерференционной, темнопольной, люминесцентной и электронной. Рассмотрим подробнее основные структуры клетки:

  • Клеточная стенка

В клеточной стенки грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом клеточной стенки этих бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40—90% массы клеточной стенки. С пептидогликаном клеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. teichos — стенка).

В состав клеточной стенки грамотрицательных бактерий входит наружная мембрана, связанная посредством липопротеина с подлежащим слоем пептидогликана. На ультратонких срезах бактерий наружная мембрана имеет вид волнообразной трехслойной структуры, сходной с внутренней мембраной, которую называют цитоплазматической. Основным компонентом этих мембран является бимолекулярный (двойной) слой липидов. Внутренний слой наружной мембраны представлен фосфолипидами, а в наружном слое расположен липополисахарид (ЛПС). Белки матрикса наружной мембраны пронизывают ее таким образом, что молекулы белка, окаймляют гидрофильные поры, через которые проходят вода и мелкие гидрофильные молекулы.

При нарушении синтеза клеточной стенки бактерий, в них образуются клетки с измененной (часто шаровидной) формой: протопласты — бактерии, полностью лишенные клеточной стенки; сферопласты - бактерии с частично сохранившейся клеточной стенкой. Бактерии сферо- или протопластного типа, утратившие способность к синтезу пептидогликана под влиянием антибиотиков или других факторов и способные размножаться, называются L-формами. 
Они представляют собой осмотически чувствительные, шаровидные, колбовидные клетки различной величины, в том числе и проходящие через бактериальные фильтры. Некоторые L-формы (нестабильные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, «возвращаясь» в исходную бактериальную клетку.

Между наружной и цитоплазматической мембранами находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы, нуклеазы, бета-лактомазы) и компоненты транспортных систем.

  • Цитоплазматическая мембрана

Цитоплазматическая мембрана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм разделены светлым - промежуточным). По структуре она похожа на плазмалемму клеток животных и состоит из двойного слоя фосфолипидов с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты — впячивания в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами.

  • Цитоплазма

Цитоплазма состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул — рибосом, ответственных за синтез (трансляцию) белков. Рибосомы бактерий имеют размер около 20. Рибосомные РНК (рРНК) - консервативные элементы бактерий («молекулярные часы» эволюции).

В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин). Они являются запасными веществами для питания и энергетических потребностей бактерий. Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки.

  • Нуклеоид

Нуклеоид — эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Ядро бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в бактериальной клетке содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК.

Кроме нуклеоида, представленного одной хромосомой, в бактериальной клетке имеются внехромосомные факторы наследственности - плазмиды, представляющие собой ковалентно замкнутые кольца ДНК.

  • Капсула, микрокапсула, слизь

Капсула - слизистая структура толщиной более 0,2 мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала. В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка (например, по Бурри-Гинсу), создающих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы. Капсула состоит из полисахаридов (экзополисахаридов), иногда из полипептидов, например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, препятствует фагоцитозу бактерий. Капсула антигенна: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы). 
Многие бактерии образуют микрокапсулу - слизистое образование толщиной менее 0,2 мкм, выявляемое лишь при электронной микроскопии. От капсулы следует отличать слизь - мукоидные экзополисахариды, не имеющие четких границ. Слизь растворима в воде. 
Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам), их еще называют гликокаликсом.

Кроме синтеза экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды.

  • Жгутики

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков - у грамположительных и 2 пары дисков - у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем-мотором, вращающим жгутик. Жгутики состоят из белка - флагеллина (от flagellum - жгутик). Субъединицы флагеллина закручены в виде спирали.

Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих) у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

  • Пили

Пили (фимбрии, ворсинки) - нитевидные образования, более тонкие и короткие (3-10нм х 0, 3-10мкм) , чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, обладающего антигенной активностью. Различают пили, ответственные за адгезию, то есть за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водносолевой обмен и половые (F-пили), или конъюгационные пили. Отличительной особенностью половых пилей является взаимодействие с особыми "мужскими" сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях.

  • Споры

Споры - своеобразная форма покоящихся фирмикутных бактерий, т.е. бактерий 
с грамположительным типом строения клеточной стенки. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.. Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов. Спорообразующие бактерии рода Bacillus имеют споры, не превышающие диаметр клетки. Бактерии, у которых размер споры превышает диаметр клетки, называются клостридиями, например, бактерии рода Clostridium (лат. Clostridium - веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нильсена в красный, а вегетативная клетка в синий цвет.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    1. Устройство и функции клеточной мембраны

Бактерии подразделяются на две естественные группы, что обусловлено различиями в строении их клеточной стенки. Одни бактерии, окрашивающиеся по Граму, получили название грамположительных, другие, не окрашивающиеся, – грамотрицательных.

У грамположительных бактерий, таких как Staphylococcus, Bacillus и Lactobacillus в муреиновую сетку встроены другие компоненты, в основном полисахариды и белки, что делает клеточную стенку сравнительно толстой. У грамотрицательных бактерий, таких как Salmonella, E. coli и Azotobacter, клеточная стенка тоньше и имеет более сложное строение. Муреиновый слой у этих бактерий снаружи покрыт гладким тонким мембраноподобным слоем липидов и полисахаридов, защищающим клетки от лизоцима – антибактериального фермента, содержащегося в слезах, слюне и других биологических жидкостях, а также в белке куриного яйца. Лизоцим расщепляет полисахаридный каркас муреина, что приводит к продырявливанию клеточной стенки и лизису клетки, т.е. к ее осмотическому набуханию и разрыву. Клеточные стенки микроорганизмов состоят из разных полимеров , по этому универсального метода их разрущения не существуют.

Информация о работе Методы дезинтеграции