Проблемы происхождения жизни

Автор работы: Пользователь скрыл имя, 13 Мая 2013 в 23:07, контрольная работа

Описание работы

Жизнь — одно из сложнейших явлений природы. Со времен глубокой древности она казалась людям таинственной и непознаваемой. Приверженцы религиозных идеалистических взглядов считали жизнь духовным, нематериальным началом, возникшим в результате божественного творения. В средние века жизнь связывалась с присутствием в организмах некоей “жизненной силы”, недоступной для познания средствами науки и практики.

Содержание работы

1.Проблема происхождения жизни
Введение. Проблема происхождения жизни
Теории происхождения жизни
Античные толкования проблемы
Креационизм
Теория самозарождения
Абиогенез
Теория панспермии
Концепция стационарного состояния
Новейшие теории происхождения
Заключение
2.Естественный отбор. Формы и направления естественного отбора
Естественный отбор
Формы естественного отбора
Направления естественного отбора
Заключение
3.Взаимодействие генов. Типы аллельного взаимодействия. Типы неаллельного взаимодействия
генов.
Взаимодействие генов
Типы аллельного взаимодействия
Типы неаллельного взаимодействия генов
Заключение

Файлы: 1 файл

Котрольная работа по биологии.docx

— 2.04 Мб (Скачать файл)

Эксперимент, который начали профессор Дорон Ланцет Кроны и его студенты, Дэниела Сегр и Dafna Бен в Центре Генома Человека в Институте Науки Германии, основан на поиске альтернативы белкам и рибонуклеиновым кислотам, так как появление белков или само-копирующихся молекул рибонуклеиновой кислоты осталось загадочным. Они развили модель, основанную на молекулах липида, и предложили новый взгляд на происхождение жизни.

Липиды - масляные вещества, известные как главные компоненты мембран клеток. Липиды имеют две  различных формы: гидрофильную (привлекающую воду), и гидрофобную (отражающую воду). Липиды с готовностью синтезируются  при моделируемых «предбиологических» условиях, и из-за их двусторонней природы имеют тенденцию спонтанно формировать надмолекулярные структуры, состоящие из тысяч молекулярных единиц. Это иллюстрируется на минимальных сообществах липида – на мицеллах, которые даже доказали, что они способнык росту и размножению в воде, что напоминает о жизнедеятельности клетки.

Все же критический вопрос был оставлен без ответа: как минимальные сообщества липида могли нести и размножать информацию? Модель, предложенная Ланцетом и коллегами предлагает решение. Они предполагают, что вначале липид-подобные составы существовали в очень большом разнообразии форм и размеров. Они показывают математически, что при существовавших условиях минимальные сообщества липида могли содержать почти так же много информации, как и рибонуклеиновые кислоты или белковая цепь. Информация была бы запасена в самом составе минимального сообщества, то есть в точном количестве каждого из его компонентов, что обеспечивало более точную передачу и сохранение информации, чем в последовательности молекулярных "гранул" на нити белка. Была представлена аналогия с духами: информация - аромат различается рецепторами, и запах в большей мере зависит от пропорции каждого компонента в смеси, чем в порядке, в котором ароматы добавлены. Таким образом, авторы доказывают, что о гетерогенных минимальных сообществах липида можно думать как о примитивных геномах. Они далее демонстрируют, как капелька - минимальное сообщество липида, при росте и делении, могло проявлять форму наследования. Их машинные моделирования показывают, как геном был бы передан минимальным сообществам потомства. Критический аспект модели - то, как такое молекулярное наследование стало возможным. В современных клетках, передача информации, содержащейся в ДНК, облегчена белковыми катализаторами фермента. В ранней предбиологической эре катализ мог быть выполнен теми же самыми липид-подобными веществами, которые несли информацию. Молекулы, уже представленные в виде капельки, функционировали как молекулярный «комитет выбора», увеличивая вероятность передачи одних признаков, и уменьшая вероятность передачи других.

Группа Ланцета, разработала  компьютеризированное моделирование, которое показывает, как, основанные исключительно на физико-химических принципах, капельки липида с определенным составом срастаются, вырастают, делятся, само-копируются, накапливают мутации, и вовлекаются в сложную эволюционную игру. Важно, что это - полные минимальные сообщества, с их сложными связями относительно маленьких молекул, которые копируются в дочерние капли.

 Это отличается от  предыдуших моделей, в которых копируется единственный длинный полимер рибонуклеиновой кислоты. Модель ученых делает очень немного химических предположений, но получает богатое молекулярное объяснение, проводящее параллель с современными процессами жизни. И поэтому имеет возможность стать тем давно разыскиваемым мостом, ведущим от неодушевленного мира до современного мира живых организмов.

 

Заключение

Вопрос зарождения жизни - один из самых животрепещущих вопросов в современной науке. Органическая жизнь прекрасно умеет воспроизводить себя, но ведь когда-то она должна была появиться из неживой, косной материи. Как это произошло - неясно до сих  пор.

Все приведенные здесь  теории и гипотезы являются лишь малой  частью того огромного количества предполагаемых ответов на величайшую загадку человечества – загадку происхождения жизни на Земле, которые существуют на сегодняшний день в мире. Нам остается лишь надеяться на скорейшее разрешение этой проблемы. Возможно, найдя ответ на вопрос, мы откроем для себя другой мир, раскроем недостающие звенья в цепи появления и развития человечества, узнаем, наконец, свое прошлое. К сожалению, пока каждый человек может лишь выбирать, какой идее ему лучше придерживаться, что ему ближе.

На сегодняшний день наиболее реалистичной кажется теория Опарина-Холдейна, но никто не знает, насколько она правдоподобна. Ведь эволюционная теория Ч. Дарвина тоже была неопровержимой долгий промежуток времени, но сейчас существует огромное количество фактов и доказательств ее неправильности.

Несмотря на такое разнообразие и огромное количество различных  гипотез и теорий о причине  возникновения жизни на Земле, ни одна из них еще не доказана и  не утверждена окончательно. Из этого  следует, что в истории человечества до сих пор есть пробелы, остается очень много неизученного. Существуют такие тайны и загадки, смысл  которых мы не можем постигнуть.

 

 

2.Естественный  отбор. Формы и направления  естественного отбора

 

Естественный  отбор

               Естественный отбор — процесс, приводящий к выживанию и преимущественному размножению более приспособленных к данным условиям среды особей, обладающих полезными наследственными признаками ;основной движущий фактор эволюции живых организмов.

                К мысли о существовании естественного  отбора пришли независимо друг  от друга и почти одновременно  несколько английских натуралистов: В. Уэллс (1813), П. Мэтью (1831), Э.  Блайт (1835, 1837), А. Уоллес (1858), Ч. Дарвин (1858, 1859); но только Дарвин сумел вскрыть значение этого явления как главного фактора эволюции и создал теорию Естественный отбор В отличие от проводимого человеком искусственного отбора, Естественный отбор обусловливается влиянием на организмы окружающей среды. Согласно Дарвину, Естественный отбор — это «переживание наиболее приспособленных» организмов, вследствие которого на основе неопределённой (неадекватной воздействиям внешней среды) наследственной изменчивости в ряду поколений происходит эволюция.

               Естественный отбор могут подвергаться не только отдельные организмы, но и группы их (разновидности, расы). Советский биолог И. И. Шмальгаузен развил (1946) представление о групповом отборе — выживании популяций, видов, родов, семейств, отрядов и тому подобное. Но так как групповой отбор происходит на основе переживания организмов, из которых складываются эти группы, ведущую роль в эволюции играет и индивидуальный естественный отбор — отбор наиболее приспособленных особей. Непрерывно идущий мутационный процесс , изменяющий генотипы, и свободное скрещивание обеспечивают генетическое разнообразие популяции. Мутации и их комбинации, проявляясь в фенотипе, обусловливают фенотипическое разнообразие организмов (неопределённая изменчивость, по Дарвину). В результате особи данной популяции различно реагируют даже на одни и те же факторы внешней среды. Биологическая разнокачественность особей в популяции и высокие темпы размножения, приводящие к недостатку жизненных средств — пищи, убежищ и тому подобное, служат предпосылками борьбы за существование, в ходе которой часть особей популяции гибнет, элиминируется, а часть выживает, отбирается. Таким образом, Естественный отбор может происходить только при наличии мутационной изменчивости, создающей материал для отбора, и представляет главный (но не единственный) фактор эволюции. Чем острее борьба за существование, тем сильнее элиминация (гибель особей или групп организмов) и тем строже Естественный отбор Но слишком резкие изменения внешней среды вызывают массовую гибель — неизбирательную элиминацию, при которой, как и при отсутствии гибели, отбора быть не может. Естественный отбор идёт только при избирательной элиминации — гибели менее приспособленных особей. Выжившие, прошедшие Естественный отбор особи, размножаясь, передают потомству свои наследственные особенности (свои генотипы), что и обеспечивает возможность приспособительного развития следующего поколения: Естественный отбор идёт по фенотипам, но отбираются генотипы. Значение Естественный отбор не в выживании как таковом, а в том, что выжившие особи оставляют потомство.

 

Формы естественного отбора

        Интенсивность давления отбора – его количественная характеристика, направление естественного отбора определяет качественное его влияние на эволюцию. В зависимости от направления выделяют разные формы естественного отбора.Генетической основной любой формы естественного отбора является наследственная изменчивость, а причиной – влияние условий среды. Мутанты, бывшие прежде менее приспособленными по сравнению с нормальным генотипом, при благоприятном для них изменении условий среды получают преимущество и постепенно вытесняют прежнюю норму. Результатом длительного действия отбора является преобразование популяционного генофонда, замена одних, количественно преобладающих, генотипов другими.

           На рисунке 6 изображены формы отбора

         Рисунок 6 – Формы отбора

        Движущий отбор. Естественный отбор всегда ведет к увеличению средней приспособленности популяций. Изменение внешних условий может приводить к изменению приспособленности отдельных генотипов. В ответ на эти изменения, естественный отбор, используя огромный запас генетического разнообразия по множеству разных признаков, ведет к значительным сдвигам в генетической структуре популяции. Если внешняя среда меняется постоянно в определенном направлении, то естественный отбор меняет генетическую структуру популяции таким образом, чтобы ее приспособленность в этих меняющихся условиях оставалась максимальной. При этом меняются частоты отдельных аллелей в популяции. Меняется и средние значения приспособительных признаков в популяциях. В ряду поколений прослеживается их постепенное смещение в определенном направлении. Такую форму отбора называют движущим отбором

Классическим  примером движущего отбора является эволюция окраски у березовой  пяденицы. Окраска крыльев этой бабочки  имитирует окраску покрытой лишайниками  коры деревьев, на которых она проводит светлое время суток. Очевидно, такая  покровительственная окраска сформировалась за многие поколения предшествующей эволюции. Однако с началом индустриальной революции в Англии это приспособление стало терять свое значение. Загрязнение  атмосферы привело к массовой гибели лишайников и потемнению стволов  деревьев. Светлые бабочки на темном фоне стали легко заметны для  птиц. Начиная с середины XIX века, в популяциях березовой пяденицы стали появляться мутантные темные (меланистические) формы бабочек. Частота их быстро возрастала. К концу XIX века некоторые городские популяции березовой пяденицы почти целиком состояли из темных форм, в то время как в сельских популяциях по-прежнему преобладали светлые формы. Это явление было названо индустриальным меланизмом. Ученые обнаружили, что в загрязненных районах птицы чаще поедают светлые формы, а в чистых – темные. Введение ограничений на загрязнение атмосферы в 1950-х годах привело к тому, что естественный отбор вновь изменил направление, и частота темных форм в городских популяциях начала снижаться. В наше время они почти так же редки, как и до начала индустриальной революции.

 

На  рисунке 7 изображено индустриальный меланизм бабочки

Рисунок 7 - Индустриальный меланизм. Темные формы бабочек незаметны на темных стволах ,                             а светлые – на светлых.

Движущий  отбор приводит генетический состав популяций в соответствие изменениям во внешней среде так, чтобы средняя  приспособленность популяций была максимальной. На острове Тринидад рыбки гуппи обитают в разных водоемах. Множество тех, что живут в низовьях речек и в прудах гибнет в зубах хищных рыб. В верховьях жизнь для гуппи гораздо спокойней – там мало хищников. Эти различия во внешних условиях привели к тому, что «верховые» и «низовые» гуппи эволюционировали в разных направлениях. «Низовые», находящиеся под постоянной угрозой истребления, начинают размножаться в более раннем возрасте и производят множество очень мелких мальков. Шанс на выживание каждого из них очень невелик, но их очень много и некоторые из них успевают размножиться. «Верховые» достигают половой зрелости позднее, их плодовитость ниже, но потомки крупнее. Когда исследователи переносили «низовых» гуппи в незаселенные водоемы в верховьях речек, они наблюдали постепенное изменение типа развития рыбок. Через 11 лет после перемещения они стали значительно крупнее, вступали в размножение позже и производили меньшее количество, но более крупных потомков.

На  рисунке 8 изображена зависимость частоты темных форм березовой пяденицы от загрязнённости атмосферы

      Рисунок 8 - Зависимость частоты темных форм березовой пяденицы от загрязнённости атмосферы                                                   

Скорость изменения частот аллелей  в популяции и средних значений признаков при действии отбора зависит не только от интенсивности отбора, но и от генетической структуры признаков, по которым идет обор. Отбор против рецессивных мутаций оказывается значительно менее эффективным, чем против доминантных. В гетерозиготе рецессивный аллель не проявляется в фенотипе и поэтому ускользает от отбора. Используя уравнение Харди-Вейнберга можно оценить скорость изменения частоты рецессивного аллеля в популяции в зависимости от интенсивности отбора и начального соотношения частот. Чем ниже частота аллеля, тем медленнее происходит его элиминация. Для того чтобы снизить частоту рецессивной летали от 0,1 до 0,05 нужно всего 10 поколений; 100 поколений - чтобы уменьшить ее от 0,01 до 0,005 и 1000 поколений - от 0,001 до 0,0005.

Движущая  форма естественного отбора играет решающую роль в приспособлении живых  организмов к меняющимся во времени  внешним условиям. Она же обеспечивает широкое распространение жизни, ее проникновение во все возможные  экологические ниши. Ошибочно думать, однако, что в стабильных условиях существования естественный отбор  прекращается. В таких условиях он продолжает действовать в форме  стабилизирующего отбора.

Информация о работе Проблемы происхождения жизни