Автор работы: Пользователь скрыл имя, 24 Апреля 2014 в 09:01, курсовая работа
Для обеспечения практически всех видов инженерно-геодезических работ создаются опорные сети, пункты которых хранят на территории работ плановые и высотные координаты. Эти сети служат основой для производства топографических съемок при изысканиях; для выполнения различных работ на территории городов; при составлении исполнительной документации; для выполнения разбивочных работ при строительстве зданий и сооружений; для наблюдений за осадками и деформациями оснований сооружений и самих сооружений. Такое широкое использование опорных геодезических сетей определяет различные схемы и методы их построения.
1. Расчетно-пояснительная записка.
Глава 1 ИНЖЕНЕРНО-ГЕОДЕЗИЧЕСКИЕ СЕТИ НА ТЕРРИТОРИИ НАСЕЛЕННОГО ПУНКТА.
1.1 Назначение, виды и особенности построения опорных сетей.
1.2 Триангуляционные сети.
1.3 Трилатерационные сети.
1.4 Линейно-угловые сети.
1.5 Полигонометрические сети.
1.6 Строительная геодезическая сетка.
1.7 Высотные опорные сети.
1.8 Опорная межевая сеть (ОМС), спутниковая система межевания земель.
Глава 2 ГЕОДЕЗИЧЕСКИЕ РАБОТЫ ПРИ ПЛАНИРОВКЕ И ЗАСТРОЙКЕ ГОРОДОВ.
2.1 Планировка и проектирование городской территории.
2.2 Составление и расчеты проекта красных линий.
2.3 Вынесение в натуру и закрепление красных линий, осей проездов, зданий и сооружений.
2.4 Строительный паспорт.
Глава 3 ГЕОДЕЗИЧЕСКОЕ ОБЕСПЕЧЕНИЕ КАДАСТРА ОБЪЕКТОВ НЕДВИЖИМОСТИ.
3.1 Общие понятия о земельном кадастре.
3.2 Состав геодезических работ для кадастра (назначение кадастровых съемок).
3.3 Способы и точность определения площадей земельных участков.
3.4 Способы и точность проектирования земельных участков.
3.5 Вынос в натуру и определение границ землевладения.
3.6 Понятие о геоинформационных системах (ГИС) и их применение при ведении кадастра.
Глава 4 ГЕОДЕЗИЧЕСКИЕ РАБОТЫ ПРИ СТРОИТЕЛЬСТВЕ И ЭКСПЛУАТАЦИИ ПОДЗЕМНЫХ КОММУНИКАЦИЙ,
4.1 Общие сведения о подземных коммуникациях.
4.2 Исполнительная съемка подземных коммуникаций.
4.2.1 Элементы подземных инженерных коммуникаций, подлежащие съемке.
4.3 Съемка существующих подземных коммуникаций.
4.3.1 Общие сведения об организации и содержании работ, способы съемки.
4.4 Поиск подземных коммуникаций (технология, приборы).
Список литературы.
2. Графическая часть.
1.1. Лабораторная работа № 1.
1.2. Лабораторная работа № 2.
1.3. Расчетно-графическая работа.
В каждом геодезическом четырехугольнике измерено шесть сторон, причем одна из них (любая) является избыточной и может быть вычислена, используя результаты измерений других сторон. Это может служить полевым контролем качества измерений длин линий. Кроме того, геодезический четырехугольник является более жесткой фигурой и ряд, составленный из таких фигур, обладает более высокой точностью.
Широкое распространение в практике инженерно-геодезических работ сети трилатерации получили при строительстве высокоэтажных зданий, дымовых труб, градирен, атомных электростанций, а также при монтаже сложного технологического оборудования. В таких сетях высокую точность измерения длин сторон (до десятых долей миллиметра) обеспечивают, используя высокоточные светодальномеры, инварные проволоки, а в некоторых случаях и жезлы специальной конструкции. Сети трилатерации с короткими сторонами принято называть сетями микротрилатерации. Иногда сети микротрилатерации являются единственно возможным методом создания геодезического обоснования для производства разбивочных работ.
1.4. Линейно-угловые сети.
Широкое внедрение в практику геодезических работ светодальномерной техники привело к распространению линейно-угловых построений. В линейно-угловых сетях измеряются все или часть углов и сторон. По сравнению с триангуляцией и трилатерацией сеть, в которой удачно сочетаются угловые и линейные измерения, в меньшей степени зависит от геометрии фигуры; существенно уменьшается зависимость между продольным и поперечным сдвигами; обеспечивается жесткий контроль угловых и линейных измерений. Линейно-угловая сеть позволяет вычислить координаты пунктов точнее, чем в сетях триангуляции и трилатерации, примерно в 1,5 раза.
Значительное повышение точности в линейно-угловых сетях возникает при определении ошибок координат пунктов.
Схема четырехугольника
без диагоналей
В сложных сетях, составленных из бездиагональных четырехугольников, нет необходимости измерять две стороны в каждом четырехугольнике. Они могут быть получены из решения предыдущих фигур.
Бездиагональные четырехугольники применяются в основном для создания строительных сеток.
Другим примером линейно-угловой сети служит опорная сеть, применяемая при строительстве мостовых переходов. В таких сетях измеряют все четыре стороны и четыре угла; в связи с этим такие сети иногда рассматриваются как своеобразный замкнутый полигонометрический ход, в котором измерены два левых и два правых угла.
1.5. Полигонометрические сети.
Полигонометрия является наиболее распространенным видом инженерно-геодезических опорных сетей. Применяется она для всех видов инженерно-геодезических работ, включая наблюдения за плановыми смещениями сооружении.
В зависимости от площади объекта, его формы, обеспеченности исходными пунктами полигонометрию проектируют в виде одиночных ходов, опирающихся на исходные пункты высшего класса (разряда), систем ходов с узловыми точками или систем замкнутых полигонов.
Наиболее широко применяемые в практике инженерно-геодезических работ полигонометрические сети состоят из ходов 4 класса, 1 и 2 разрядов. При этом полигонометрия 4 класса существенно отличается от той же полигонометрии, создаваемой для построения государственной геодезической сети, допустимыми длинами ходов и ошибками измерения углов.
При проектировании полигонометрии стремятся не допускать близкого расположения пунктов, принадлежащих разным ходам, так как в этом случае ошибка их взаимного положения может значительно превосходить ошибки соединяющего их хода, что затруднит их использование в качестве исходных данных для сетей более низкого класса точности. Лишь при построении городской полигонометрии возможно параллельное прокладывание ходов одного класса или разряда на расстоянии 2,5 км друг от друга для 4 класса и 1,5 км для 1 разряда.
При создании полигонометрии наиболее трудоемким считается процесс линейных измерений. Различают два основных метода: непосредственные и косвенные измерения. В методе непосредственных измерений длины сторон измеряют светодальномерами или подвесными мерными приборами, а в методе косвенных определений длины сторон вычисляют по измеренным вспомогательным величинам. В связи с этим по методу линейных измерений полигонометрию разделяют на светодальномерную, короткобазисную, створно-короткобазисную, параллактическую и траверсную (линии измеряются подвесными мерными приборами). В современных условиях наибольшее распространение получила светодальномерная полигонометрия.
Поскольку значительную долю инженерно-геодезических работ приходится выполнять на застроенной территории, то при производстве угловых измерений в ходах полигонометрии возникает ряд особенностей организационного и точностного порядка, связанных с влиянием внешних условий. Из-за застройки приходится проектировать ходы со сравнительно короткими длинами сторон, что приводит к необходимости более тщательного центрирования теодолита и визирных целей. Сочетание каменной застройки, асфальтированных поверхностей с зелеными насаждениями создает на застроенных территориях устойчивые температурные поля; в результате измеряемые углы искажаются влиянием боковой рефракции. Кроме того, на нагретом асфальте штативы становятся неустойчивыми. Все это приводит к необходимости выбирать наиболее благоприятное время для измерений, например утренние и вечерние часы, пасмурную погоду и т. п. Интенсивное движение на городских улицах создает организационные трудности при производстве геодезических работ вообще и для полигонометрии в частности.
Оценка проектов полигонометрических сетей заключается в определении ожидаемых ошибок координат узловых пунктов, относительных ошибок ходов и сравнении их с допустимыми. Выполняется она строгими и приближенными способами.
Строгая оценка, как правило, выполняется на ЭВМ по специальным программам.
1.6. Строительная геодезическая сетка.
Строительная сетка создается в основном на промышленных площадках и служит основой для разбивочных работ, монтажа технологического оборудования и производства исполнительных съемок.
Характерной особенностью строительной сетки как инженерно-геодезической сети является расположение пунктов, образующих сетку квадратов или реже прямоугольников, стороны которых параллельны осям проектируемых сооружений или осям расположения технологического оборудования. Таким образом, строительная сетка представляет собой закрепленную на местности систему прямоугольных координат, облегчающую привязку осей сооружений и производство разбивочных работ.
В отличие от других видов опорных сетей точную конфигурацию и расположение пунктов строительной сетки проектируют заранее. Проектирование выполняют на генеральном плане будущего сооружения. При этом места расположения пунктов строительной сетки намечают таким образом, чтобы обеспечить сохранность наибольшего их числа в процессе производства строительных работ на площадке.
В зависимости от назначения строительной сетки и типа строящегося объекта длину стороны квадрата сетки принимают от 100 до 400 м. Наибольшее распространение получила сетка со стороной 200 м. В цеховых условиях для расстановки технологического оборудования сетку проектируют со стороной 10 - 20 м.
При создании строительной сетки используют частную прямоугольную систему координат. Начало этой системы выбирают таким образом, чтобы все пункты строительной сетки имели положительные значения абсцисс и ординат. Координатные оси в большинстве случаев обозначают буквами А и В. Для обозначения номера пункта к буквам добавляют индекс, указывающий число сотен метров по оси абсцисс или ординат. Так, например, номер пункта, обозначенный А3/В5, будет указывать, что этот пункт имеет координаты: X = 300 м, Y = 500 м. Для точек, координаты которых не кратны 100 м, запись их обозначений производят подобно пикетажным; например, запись А14 + 25,65/B8 + 30,50 будет означать, что точка имеет координаты X = 1425,65 м, Y = 830,50 м.
Требования к точности построения строительной сетки определяют исходя из ее назначения. Опыт строительства крупных промышленных комплексов показывает, что в большинстве случаев для выполнения основных разбивочных работ и исполнительных топографических съемок в масштабе 1:500 ошибки во взаимном положении смежных пунктов строительной сетки в среднем должны составлять 1:10000 или 2 см для расстояний между ними в 200 м. Прямые углы сетки должны быть построены со средней квадратической ошибкой 20’’.
Вынос в натуру строительной сетки с соблюдением (в пределах заданной точности) намеченных мест расположения ее вершин производят в несколько этапов.
Первоначально выносят в натуру исходные направления. На одном из них выбирают две точки А и В, координаты которых определяют графически и, используя координаты пунктов плановой основы, как правило имеющихся в районе строительства, решают обратные геодезические задачи и вычисляют полярные координаты S1 и S2, β1 и β2. Для исключения грубых ошибок целесообразно вынести в натуру третью точку С по элементам S3, β3. После закрепления точек А, В и С на местности измеряют угол ВАС, по отклонению которого от 90° можно судить о точности выполненных работ.
Так как координаты точек А, В, С определялись по генплану графически, то точность их выноса в натуру составит около 0,2 - 0,3 мм на плане. Но это не играет существенной роли, так как на эту величину сместится весь комплекс проектируемых сооружений.
Однако таким способом нельзя выносить в натуру строительную сетку при реконструкции или расширении строящегося предприятия. В этом случае новую строительную сетку следует развивать
Схема выноса
в натуру исходных направлений строительной
сетки
как продолжение существующей. Если знаки построенной (старой) сетки не сохранились, следует восстановить на местности основные оси существующих цехов или установок, с которыми технологически связаны вновь создаваемые сооружения, и уже от них (как от исходных направлений) разбивать новую строительную сетку.
От вынесенного и закрепленного в натуре исходного направления выполняют детальную разбивку строительной сетки осевым способом и способом редуцирования.
При осевом способе разбивки строительную сетку сразу строят на местности с расчетной точностью путем точного отложения проектных элементов. Для этого, опираясь на закрепленные исходные направления, стремятся вынести два взаимно перпендикулярных направления АВ и АС, пересекающихся примерно в середине площадки (рис. 13.6). Так как исходные направления вынесены в натуру с небольшой точностью, то угол ВАС может значительно отличаться от прямого. Измеряют угол β двумя-тремя приемами теодолитом типа 2Т2 и, вычислив величину отклонения его от прямого угла ∆β = 90° - β, исправляют положение точек В и С линейными поправками ΔSB и ΔSC, чтобы направления АВ и АС стали строго перпендикулярными. Поправки вычисляют по формулам
причем расстояния АВ1 и АС1 берут с генплана с точностью до 1 м. Исправленное положение точек B и С закрепляют на местности и вдоль этих осей откладывают в створе по теодолиту отрезки, равные длинам сторон сетки. Измерения выполняют рулетками или лентами с натяжением по кольям с учетом поправок за температуру, наклон, компарирование. Целесообразно применять электронные тахеометры, позволяющие быстро вычислять горизонтальные проложеыия с учетом всех поправок. Закончив разбивку в конечных пунктах F, R, D, Е, строят на них прямые углы и продолжают разбивку по периметру сетки. После этого временные знаки заменяют на постоянные. Затем по створам между соответствующими пунктами основных четырех полигонов разбивают и закрепляют заполняющие пункты сетки.
При способе редуцирования сетку сначала строят с точностью 1:1000 - 1:2000 согласно проекту на всей площадке и закрепляют временными знаками. Затем создают на площадке плановые сети и определяют точные координаты всех закрепленных временными знаками пунктов сетки.
На больших площадках плановые сети строят в несколько этапов. В качестве главной основы могут служить сети триангуляции, трилатерации, светодальномерной полигонометрии или линейно-угловые сети.
Пункты главной основы стремятся расположить по углам площадки; между ними по периметру прокладывают ходы первого порядка, между которыми развивают ходы второго порядка.
Наиболее эффективным методом определения координат пунктов строительной сетки первого порядка является светодальномерная полигонометрия.
Координаты пунктов в заполняющих сетях могут определяться различными методами: ходами полигонометрии (светодальномерной, траверсной, короткобазисной), триангуляцией, бездиагональными четырехугольниками, линейными засечками, угловыми двух-фигурными засечками проф. А.И. Дурнева и др.
Для создания сетей второго порядка особенно эффективным является метод четырехугольников без диагоналей.
1.7. ВЫСОТНЫЕ ОПОРНЫЕ СЕТИ
В качестве высотной основы для создания топографических планов, производства разбивочных работ и для наблюдений за осадками инженерных сооружений используют систему знаков, абсолютные высоты которых определяют проложенном нивелирных ходов II, III и IV классов. Высотные опорные сети, как правило, опираются не менее чем на два репера государственного нивелирования более высокого класса. Однако бывают случаи, особенно при наблюдениях за деформациями инженерных сооружений, когда высотная опорная сеть является свободной и лишь для привязки опирается на один репер государственной сети.
На территориях крупных городов площадью, превышающей 500 км2, высотной основой служит нивелирование I класса. Наибольшие требования к точности основных разбивочных работ по высоте возникают при строительстве метрополитенов и крупных самотечных канализационных коллекторов.
Основные показатели |
Классы нивелирования | ||
II |
III |
IV | |
Средняя квадратическая ошибка нивелирования на 1 км хода, мм |
2 |
5 |
10 |
Систематическая ошибка на 1 км хода, мм |
0,4 |
- |
- |
Допустимые невязки и расхождения сумм превышений прямого и обратного ходов, мм |
5√L |
10√L |
20√L |
Максимальная длина хода, км: |
|
|
|
Расстояние между рабочими реперами на стройплощадке, км |
0,5 |
0,5 |
0,5 |
Наибольшее расстояние от нивелира до рейки, м Наименьшая высота визирного луча, м |
75 |
75 |
100 |
Наименьшее расстояние визирного луча, мм |
0,5 |
0,3 |
0,2 |
Информация о работе Геодезические работы при ведении кадастра