Автор работы: Пользователь скрыл имя, 15 Августа 2013 в 12:19, доклад
Научный метод — совокупность основных способов получения новых знаний и методов решения задач в рамках любой науки.
Эмпирическое исследование направлено непосредственно на объект и опирается на данные наблюдения и эксперимента. На этом уровне научного познания преобладает чувственное познание как живое созерцание.
Теоретическое исследование связано с совершенствованием и развитием понятийного аппарата науки и направлено на всестороннее познание реальности в ее существенных связях и закономерностях. Данный уровень научного познания характеризуется преобладанием рациональных форм знания – понятий, теорий, законов и других форм мышления.
Взаимодействие.
Согласно данной
физической картине мира
Электромагнитные поля и их лечебное применение.
Все физические тела имеют три составляющие: вещество, энергию и информацию, которые образуют единое целое в сложной зависимости между собой. Биологическое действие любого физического фактора происходит с постоянным обменом информацией, энергией и веществом.
Вещество и энергия - категории более привычны, в частности потому, что определяемы и измеряемы.
Понятие информации - одно из важнейших, так как процесс управления связан с получением, накоплением и передачей информации.
И если при действии
механических и термических фак
Электрические и магнитные явления связаны с особой формой существования материи – электрическими и магнитными полями и их взаимодействием. Эти поля настолько взаимозависимы, что принято говорить о едином электромагнитном поле (ЭМП). Электромагнитное поле оказывает особые воздействия на биологические системы.
Электромагнитное
поле может существовать как
в вещественной среде, так и
в вакууме. Важным его
Любые процессы
в организме - соединение двух
молекул, перенос кислорода,
Представить себе
конкретно, каким образом
Логика живого, присущее
живому стремление к
Шкала электромагнитных волн.
Вся шкала условно
подразделяется на шесть
Радиоволны обусловлены
переменными токами в
В медицине принято следующее условное разделение электромагнитных колебаний на частотные диапазоны.
Низкие (НЧ) До 20 Гц Звуковые (ЗЧ) 20 Гц -20 кГц Ультразвуковые или надтональные (УЗЧ) 20 кГц -200 кГц Высокие (ВЧ) 200 кГц – 30 МГц Ультравысокие (УВЧ) 30 МГц – 300 МГц Сверхвысокие (СВЧ) 300 МГц – 300 ГГц Крайневысокие (КВЧ) Свыше 300 ГГц
Принято деление
оптического спектра на
В последние годы все шире распространяются и развиваются методы, основанные на выработке и передаче организму сигналов очень малой мощности, не вызывающих заметных изменений температуры тканей, но определяющих потоки информации, регулирующие направления функционирования организма. Принципиальная особенность этих методов - дозированное целенаправленное низкоинтенсивное воздействие, поскольку во всех биологических системах живого организма при многих заболеваниях физико-химические и биохимические процессы происходят на низких энергетических уровнях.
Одна из рабочих
гипотез этих методов основана
на способности живого
Таким образом,
лечение состоит в
Созданные на этих
принципах приборы успешно
Изложенные выше научные принципы реализованы в медицинском аппарате «DETA-QUANTUM» НПП "ЭЛИС" в режиме электромагнитной терапии.
Причинности принцип
Перевод
Причинности принцип
в физике, один из наиболее
общих принципов,
В аппарате физической теории
П. п. используется прежде
П. п. безусловно
П. п., с которым имеет дело современная физика, является конкретно-физическим утверждением, существенно более узким по своему содержанию, чем общее философское понятие причинности (См. Причинность) — взаимной обусловленности, детерминированности последовательности событий. Проблема причинности приобрела большую остроту в период становления квантовой механики (См. Квантовая механика), когда широко обсуждался вопрос, противоречит ли детерминизму вероятностное описание микроявлений. К отрицательному ответу на этот вопрос привело понимание необходимости отказаться от прямолинейного детерминизма классической механики при рассмотрении статистических закономерностей микромира. Кажущееся противоречие с общим П. п. объясняется непригодностью классической физики для описания микрообъектов. Переход к адекватному описанию на языке волновых функций (См. Волновая функция) приводит к тому, что и в квантовой механике начальное состояние системы полностью определяет всю последующую её эволюцию (при известных взаимодействиях системы).
Проблема соблюдения причинности в философском смысле («общего П. п.») сохраняет свою остроту и сейчас при анализе возможных форм нарушения физического П. п. «в малом»; такой анализ стимулируется разработкой нелокальной теории поля, исследованием проблемы движения со сверхсветовыми скоростями, а также специальными экспериментами с целью проверки П. п. Этот анализ должен выяснить, какие формы нарушения П. п. ведут к непривычной, а какие — к недопустимой, с точки зрения общего П. п., ситуациям. Например, замена исходного П. п. на противоположное утверждение («прошлое не влияет на будущее») не противоречит общему П. п., хотя и ведёт к в высшей степени непривычным следствиям. В этом случае цепочка причинно-следственных связей не разрывается, а предстаёт в обращенном во времени виде. Противоречие с общим П. п. возникает в случае, если предположить, что причинная связь может быть направлена и вперёд и назад во времени. При этом можно было бы осуществить замкнутый цикл причинно-следственной связи, что привело бы к нарушению принципа «событие-следствие не влияет на породившую его событие-причину». Этот принцип имеет существенно более широкую и адекватную общему П. п. формулировку, чем исходный П. п. Если бы следствие было способно влиять на свою собственную причину, то это влияние могло бы выразиться в исчезновении события-причины, что, очевидно, повлекло бы за собой разрыв причинно-следственной связи. Например, испущенная излучателем волна, если бы она была способна возвратиться после отражения обратно в более ранний момент времени, могла бы взорвать излучатель ещё до того, как он начал работать. Из этих же соображений следует принципиальная невозможность путешествия на «машине времени» в прошлое.
С П. п. в современной физике связан комплекс сложных и глубоких проблем, которые ещё ждут своего решения.
Лит.: Киржниц Д. А., Сазонов В.
Н. (ред.), Сверхсветовые движения
и специальная теория
13Мате́рия (от лат. materia — вещество) — философская категория для обозначения физической субстанции вообще, в противоположность сознанию или духу[1]. В материалистической философской традиции категория «материя» обозначает субстанцию, обладающую статусом первоначала (объективной реальностью) по отношению к сознанию (субъективной реальности)[2]: материя отображается нашими ощущениями, существуя независимо от них (объективно).
Материя является обобщением
понятия материального и
Понятие материи является одним из фундаментальных понятий материализма и, в частности, такого направления в философии, как диалектический материализм.
ДИСКРЕТНОСТЬ
ДИСКРЕТНОСТЬ (от латинского
discretus - разделенный, прерывистый), прерывность;
противопоставляется
ПО́ЛЕ ФИЗИЧЕСКОЕ
одно из осн. понятий физики, возникшее во 2-й пол. 17 в. [хотя термин "П. ф." был введен в физику значительно позднее англ. физиком Дж. К. Максвеллом; в математике появление; термина "поле" связано с работой англ. математика У. Р. Гамильтона "О кватернионах" (W. R. Hamilton, Lectures on quarternions, Dublin, 1853)]. С этого времени понятие П. ф. неоднократно изменяло свой смысл, сохранив, однако, на всех этапах этого изменения тесную связь с понятием пространства, выражающуюся в использовании понятия П. ф. для характеристики пространственно непрерывного распределения физич. величин. Представления совр. физики о П. ф. развертываются по двум существенно различным линиям – к л а с с и ч е с к о й и к в а н т о в о й.
Классическая линия развития понятия П. ф. Эта линия начинается с установления Ньютоном закона всемирного тяготения (1687), который позволил вычислять П. ф. сил тяготения. Она продолжается в гидродинамич. работах Эйлера (50-е гг. 18 в.), рассматривавшего распределение скоростей в пространстве, заполненном движущейся идеальной жидкостью (поле скоростей). Наибольшие заслуги в становлении понятия П. ф. принадлежат англ. физику М. Фарадею (30-е гг. 19 в.), детально разработавшему понятие о силовых линиях П. ф. Классич. линия развития понятия П. ф. разветвляется на две. Главная ветвь связана с изучением П. ф. электрических и магнитных сил (закон Кулона, 1785), к-рые считались сначала независимыми, но благодаря работам дат. физика X. Эрстеда (1821), франц. физика А. Ампера (1826) и Фарадея (1831) они стали рассматриваться совместно – как компоненты единого электромагнитного П. ф. В этот период смысл понятия П. ф. зависел от представлений о природе действия сил. В концепции дальнодействия, восходящей к Ньютону, понятие П. ф. играло вспомогат. роль, оно служило лишь сокращенным обозначением области пустого пространства, в к-ром могут проявиться дальнодействующие силы. Зная потенциал П. ф., можно было вычислить в каждой точке пространства силу, действующую на помещенное туда тело, не обращаясь к закону взаимодействия тел. Носителями атрибутов физич. реальности (массы, энергии, импульса, заряда, силы) в этой концепции были тела, взаимодействующие на расстоянии без помощи к.-л. посредствующих агентов. При отсутствии хотя бы одного из взаимодействовавших тел отсутствовали и силы, т.е. П. ф. не имело самостоят. существования. В концепции близкодействия, берущей начало от Декарта, взаимодействие осуществлялось посредством изменения состояния промежуточной среды – эфира, заполняющего все пространство. Носителями энергии в этой концепции были не только взаимодейств. тела, но и окружающий их эфир, так что наряду с п о л е м с и л можно было говорить и о п о л е э н е р г и и. При этом как в механич. теориях, объяснявших возникновение сил механич. перемещением и упругим натяжением эфира, так и в чисто электромагнитных теориях, оставлявших эфир неподвижным и не деформируемым, П. ф. было по-прежнему лишено самостоят. существования. Будучи характеристикой изменения состояния эфира – субстанции, обладавшей первичной реальностью, П. ф. имело онтологич. статус его аттрибута, т.е. обладало только вторичной реальностью. Изменение это вызывалось дискретными источниками П. ф. – токами и зарядами, так что П. ф., неразрывно связанное с ними, в свободном от источников П. ф. эфире не существовало. Следующий шаг в развитии классич. понятия П. ф. связан с достижениями теории свободного динамич. электромагнитного П. ф. (электромагнитных волн, частным случаем к-рых является свет), к-рое, будучи создано, может существовать вне зависимости от породивших его источников (Максвелл, 1864; Герц, 1888). Благодаря этому стало возможным приписать П. ф. импульс. Однако поскольку эфир продолжал выполнять функцию материального носителя и для динамич. П. ф., последнее по-прежнему было лишено самостоят. существования, так что импульс П. ф. (равно как и его энергия) фактически был характеристикой не П. ф., а эфира. Вследствие этого выражение "энергия поля" следовало понимать не в его буквальном смысле, а как "поле энергии". Классич. теория электромагнитного П.ф. была завершена работами А. Эйнштейна по спец. относительности теории (1905). Лишение эфира функции быть абс. системой отсчета создало возможность для приписывания П. ф. самостоят. существования. Хотя такое решение и не диктовалось необходимостью, оно все же было принято большинством физиков. Превратившись из состояния материальной субстанции (эфира) в самостоят. материальную субстанцию, электромагнитное П. ф. разделило с веществом функции носителя энергии, импульса и массы. Энергия и импульс продолжают оставаться характеристиками движения. [Иногда статус материальной субстанции приписывают не П. ф., а энергии. Тем самым движение (энергия) (см. Ф. Энгельс, Диалектика природы, 1964, с. 45, 78, 168) превращается из атрибута в субстанцию. В этом случае П. ф. по-прежнему не имеет самостоят. существования, а служит характеристикой непрерывного распределения энергии в пространстве, что опять делает более правильным выражение "поле энергии", а не "энергия поля". Направление, приписывающее энергии статус субстанции, иногда отождествляется с энергетизмом).]