Технология конструкционных электротехнических материалов

Автор работы: Пользователь скрыл имя, 20 Января 2015 в 18:29, реферат

Описание работы

Кроме того, при конструировании даже простейших изделий, предназначенных для работы в электрическом поле, необходимо четко представлять, какие процессы происходят в материале, как влияет тот, или иной материал на работу других частей устройства, в том числе за счет перераспределения электрического поля.

Содержание работы

Введение………………………………………………………………………………………3
Конструкция и область применения различных типов кабеля (вопрос 18)………4
Тепловой пробой твердых диэлектриков (вопрос 28)……………………………...9
Зависимость пробивного напряжения в твердом диэлектрике от температуры
и частоты (вопрос 30)……………………………………………………………….13
Нагревостойкость твердых и жидких диэлектриков (вопрос 12)………………..15
Основные физико-химические характеристики проводниковых материалов
(вопрос 16)…………………………………………………………………………..16
Классификация магнитных материалов и требования к ним (вопрос 22)………27
Основные виды поляризации (вопрос 4)………………………………………….36
Сверхпроводники и возможности их применения в электротехнике
(вопрос 20)………………………………………………………………………..…41
Векторное изображение электрических величин (тока, напряжения, ЭДС). Примечание комплексных чисел для расчета электрических цепей. Представление синусоидальных э.д.с., напряжений и токов комплексными числами…………………………………………………………………………….51
Ответы на письма в редакцию……………………………………………………………57 Заключение…………………………………………………………………………………59
Список реферативно использованной литературы………………………………………60

Файлы: 1 файл

Реферат по ТКМ Чечкова А.В..doc

— 1.62 Мб (Скачать файл)

           Изоляция служит для обеспечения необходимой электрической прочности токопроводящих жил силового кабеля по отношению друг к другу и к заземленной оболочке (земле).

             Экраны используются для защиты внешних цепей от влияния электромагнитных полей токов, протекающих по силовому кабелю, и для обеспечения симметрии электрического поля вокруг жил кабеля.

              Заполнители предназначены для устранения свободных промежутков между конструктивными элементами силового кабеля в целях герметизации, придания необходимой формы и механической устойчивости конструкции кабеля.

               Оболочки защищают внутренние элементы кабеля от увлажнения и других внешних воздействий.

              Защитные покровы предназначены для защиты оболочки силового кабеля от внешних воздействий. В зависимости от конструкции кабеля в защитные покровы входят подушка, бронепокров и наружный покров[15].

                Силовые кабели с изоляцией из сшитого полиэтилена и оболочкой из полиэтилена показаны на рисунке 1.2

 

 

Рисунок 1.2 - Конструкция кабеля типа ПвПг

1- Токопроводящая медная жила; 2- Полупроводящий слой по жиле; 3- Изоляция; 4-Полупроводящий слой по изоляции; 5-Водонабухающая полупроводящая лента; 6- Экран из медных проволок; 7- Медная лента; 8-Водонабухающая лента; 9 - Оболочка из полиэтилена.

 

 

 

 

 

 

 

Таблица 1.1 Марки, элементы конструкции и области применения

Марка кабеля

Материал жил

Оболочка

Герметизация

Область применения

АПвП

Алюминий

П

нет

Прокладка в земле и на воздухе при условии обеспечения мер противопожарной защиты

ПвП

Медь

П

нет

То же

АПвПу

Алюминий

Пу

нет

То же на сложных участках трасс

ПвПу

Медь

Пу

нет

Тоже

АПвПг

Алюминий

П

г

Для прокладки в грунтах с повышенной влажностью и в сырых, частично затапливаемых помещениях

ПвПг

Медь

П

г

То же

АПвП2г

Алюминий

П

Тоже

ПвП2г

Медь

П

То же

АПвВ

Алюминий

В

нет

Для прокладки в кабельных сооружениях и производственных помещениях и в сухих грунтах

ПвВ

Медь

В

нет

То же

АПвВнг

Алюминий

Внг

нет

То же для групповой прокладки

ПвВнг

Медь

Внг

нет

Тоже


 

Типы оболочек: П - оболочка из полиэтилена; Пу - оболочка из полиэтилена, усиленная ребрами жесткости; В - оболочка из ПВХ-пластиката; Внг - оболочка из ПВХ-пластиката пониженной горючести. Типы герметизации: 
г - продольная герметизация экрана водонабухающими лентами; 
2г - поперечная герметизация алюминиевой лентой, сваренной с оболочкой, в сочетании с продольной герметизацией водонабухающими лентами.

 

 

 

        2   Тепловой пробой твердых диэлектриков (вопрос 28)                                              У твердых диэлектриков могут наблюдаться три основных механизма пробоя:

1. электрический;

2. тепловой;

3. электрохимический.

         Каждый из указанных механизмов пробоя может иметь место в одном и том же материале в зависимости от характера электрического поля, в котором он находится – постоянного или переменного, импульсного, низкой или высокой частоты; времени воздействия напряжения; наличия в диэлектрике дефектов, в частности закрытых пор; толщины материала; условий охлаждения и т. д. [2, С.198].

 

      Тепловой пробой связан с разогревом диэлектрика вследствие выделяемой в нем энергии при приложении напряжения. Если с повышением температуры выделяемая энергия увеличивается, то при некотором напряжении, называемом напряжением теплового пробоя, тепловыделение в диэлектрике превысит теплоотдачу в окружающую среду. Это обусловливает непрерывный рост температуры во времени и разрушение диэлектрика [2, С.198].

        Для загрязненных либо недостаточно очищенных диэлектриков, а также для полупроводников и резистивных материалов механизм пробоя связан с процессами электропроводности и нагревания материалов. Тепловой пробой – разрушение диэлектрика за счет прогрессирующего локального энерговыделения при протекании тока в среде. Тепловой пробой возникает вследствие положительного температурного коэффициента электропроводности диэлектриков, т.е. увеличения электропроводности диэлектрика с ростом температуры. Эту зависимость обычно представляют в виде

        ,                                                  (2.1)        

где а – температурный коэффициент зависимости; – начальная температура; – электропроводность при начальной температуре.

Механизм возникновения пробоя представляется следующим образом.

Приложенное напряжение вызывает потери энергии в диэлектрике; при постоянном напряжении они определяются удельной проводимостью диэлектрика g, а при переменном – тангенсом угла диэлектрических потерь tgd . Так как с повышением температуры величины g, а в области повышенных температур – и величины  tgd растут, то при некотором напряжении возможно возникновение неустойчивого теплового состояния диэлектрика. В этом случае увеличение g или tgd с повышением температуры, в свою очередь, приводит к увеличению выделяемых в диэлектрике потерь и к дальнейшему росту температуры; это заканчивается тепловым разрушением диэлектрика.

 

Рисунок  2.1 – Схема диэлектрика к расчёту теплового пробоя:

А, В – электроды; С – диэлектрик

 

Рассмотрим слой однородного диэлектрика с толщиной = d, находящийся между бесконечными плоскими электродами (рисунок 2.1). Составим дифференциальное уравнение, соответствующее равновесному состоянию системы. В данном случае из соображений симметрии принимаем плоскопараллельное тепловое поле с градиентом температуры по оси z. Поток тепла, входящий за 1 с в параллельный электродам слой диэлектрика толщиной dz и площадью 1 см2, будет меньше потока, выходящего из слоя, на количество тепла, выделяющегося ежесекундно в этом слое вследствие диэлектрических потерь

 

       ,  (2.2)

где k – коэффициент теплопроводности диэлектрика; – эквивалентная удельная проводимость диэлектрика. Для переменного напряжения

       (2.3)

где – относительная диэлектрическая проницаемость; – частота приложенного напряжения.

Напряженность теплового пробоя изменяется обратно пропорционально d.

С учетом связи между и tgd по уравнению (2.3) имеем

                                    (2.4) 

где k – в кал/с град см; – в вольтах.

Приведенные выше формулы получены в предположении, что в диэлектрике при его разогреве величина напряженности поля не зависит от координаты z. Это допущение можно считать справедливым при переменном напряжении, для которого, если пренебречь током проводимости

                    (2.5)

Величина для большинства технических диэлектриков слабо зависит от температуры при не очень высоких частотах. При постоянном напряжении

                    (2.6)

и вследствие зависимости от имеет место существенная зависимость Е от z, причем слои диэлектрика, ближайшие к электродам, нагружаются сильнее, чем центральные.

В этом случае напряженность и напряжение теплового пробоя определяются формулами, аналогичными (2.4 и (2.5), в которых изменяется только функция

              (2.7)

            (2.8)

При d ® ∞ и c ® ∞ j1(с) ® 1,0. Повышение пробивных напряжений для постоянного напряжения при тех же d и объясняется уменьшением напряженности в центральной части диэлектрика, т. е. в области наибольших температур, и затруднением развития теплового пробоя.

При малых толщинах диэлектрика на основании (2.7) и (2.8), пробивное напряжение пропорционально , а пробивная напряженность – обратно пропорциональна . Термическое разрушение диэлектрика может происходить и без неограниченного роста температуры. В стационарном состоянии, когда количество тепла, выделяемого в диэлектрике за счет потерь, равно количеству тепла, отводимого через электроды, установившаяся температура может оказаться слишком высокой. Разрушение в этом случае может наступить в результате оплавления, обугливания и подобных процессов, вызванных диэлектрическим нагревом. Это явление называют тепловым пробоем второго рода [2, С.204].

 

3  Зависимость пробивного напряжения в твердом диэлектрике

от температуры и частоты (вопрос 30)

Исследования пробоя твердых диэлектриков по своему объему значительно превышают исследования всех других видов диэлектриков, что обусловлено более широким применением твердых диэлектриков. Это, в свою очередь, обусловлено  их высокими электрическими характеристиками в сочетании с удовлетворительными механическими и теплофизическими характеристиками. Механизм пробоя значительно отличается для разных диэлектриков и даже для одного и того же диэлектрика при разных условиях [16].

Закономерности пробоя твердых диэлектриков:

Температурная зависимость. Эта зависимость зачастую имеет достаточно сложный вид. Например в некоторых случаях электрическая прочность с ростом температуры сначала увеличивается затем уменьшается, в других случаях монотонно возрастает или убывает. Последний случай обычно хорошо описывается моделью теплового пробоя.

       Пробивное напряжение, обусловленное нагревом диэлектрика, связано с частотой поля, условиями охлаждения диэлектрика, температурой окружающей среды; оно зависит также от нагревостойкости материала. С повышением температуры электрическая прочность уменьшается.

      Для однородных  плоских диэлектриков, обладающих  потерями, существует приближенный  метод расчета пробивного напряжения.

      Для расчета U пр полагаем, что пробой происходит  при повышенных температурах и в диэлектрике преобладают потери от сквозной электропроводности. Таким образом, учитывая экспоненциальную зависимость тангенса потерь (tg δ) от температуры и используя выражение Ра = U ω С-tgδ, после преобразований получим

 

                      Pа = U2 f ε S tgδ eα(t – t0) / (1,8 1010 h),       (3.1)

где U - приложенное напряжение; f - частота; ε. - диэлектрическая проницаемость материала; S - площадь электрода; tg δ - тангенс угла потерь диэлектрика при t 0 - температуре окружающей среды; α- температурный коэффициент тангенса угла потерь; t - температура нагретого за счет диэлектрических потерь материала; t 0 - температура электродов, приблизительно равная температуре окружающей среды; h - толщина диэлектрика.

      Теплопроводность  материала электродов обычно  на два - три порядка больше, чем теплопроводность диэлектрика, поэтому полагаем, что теплота из нагревающегося объема диэлектрика передается в окружающую среду через электроды. Мощность, отводимая от диэлектрика, выражается формулой  Ньютона

 

                                 Ра = 2 σ S (t - t0 ).       (3.2)

где σ - коэффициент теплопередачи системы диэлектрик - металл электродов.

Для наглядности дальнейших рассуждений воспользуемся графическим построением, показанным на рисунок 3.1, где в выбранной системе координат изображены экспоненты тепловыделения  при различных значениях приложенного напряжения и прямая теплопередачи [16].

   

Рисунок  3.1 - Пробивное напряжение при тепловом факторе

 

             На рисунке 3.1 изображены: прямая теплопередачи Рт = F(t); экспоненты тепловыделения для трех различных значений приложенного напряжения. При значении напряжения U 1, прямая теплопередачи является секущей кривой тепловыделения, и, следовательно, диэлектрик нагреется до температуры t 1температуры состояния устойчивого равновесия. Напряжение U1 будет неопасным для образца, если нагрев до этой температуры не приведет к механическому и ш химическому разрушению структуры материала образца. Поэтому увеличим напряжение до значения U 1, при котором кривая тепловыделения станет касательной к прямой теплопередачи, что приведет к состоянию неустойчивого теплового равновесия при температуре t. При значении напряжения U 2 кривая тепловыделения пройдет выше прямой теплопередачи, а это означает отсутствие теплового равновесия, т.е. температура будет возрастать до разрушения диэлектрика - до теплового пробоя.

          Таким образом, напряжение U , при котором имеет место неустойчивый режим - граничный режим, можно принять за напряжение пробоя U пр.

Его значение можно определить по двум условиям

                                           Ра = Рt,        (3.3)

                                   dPa / dt = dP t / dt                   (3.4)

Решая эти два уравнения относительно Ui с учетом выше обозначенных значений для Ра и Рt, получаем

                  U2 f ε tgδ S eα(t – t0) / (1,8 1010 h) = 2 σ S (t – t0),                                          (3.5)

                     U2 f ε tgδ S eα(t – t0) / (1,8 1010 h) = 2 σ S      (3.6)

Разделив эти два выражения, получим 1 / α = t – t 0, тогда, подставив его в

последнее выражение и решив его относительно U, получим

                          U2пр = 1,8 1010 2 σ h / (f ε tgδ α)       (3.7)

или

                            Uпр = К ( σ h / (f ε tgδ α)1/2,      (3.8)

где К – числовой коэффициент, равный 1,15 10 5, если все величины выражены в единицах системы СИ.

Отсюда следует, что пробивное напряжение будет выше ( изменяется по закону экспоненты), если диэлектрик будет толще, условия теплоотвода лучше (σ больше), частота ниже, а ε и tgδ меньше. При больших ε, tgδ и при высоких частотах, а также при большом температурном коэффициенте тангенса угла потерь пробивное напряжение будет ниже.

Информация о работе Технология конструкционных электротехнических материалов