Технология конструкционных электротехнических материалов

Автор работы: Пользователь скрыл имя, 20 Января 2015 в 18:29, реферат

Описание работы

Кроме того, при конструировании даже простейших изделий, предназначенных для работы в электрическом поле, необходимо четко представлять, какие процессы происходят в материале, как влияет тот, или иной материал на работу других частей устройства, в том числе за счет перераспределения электрического поля.

Содержание работы

Введение………………………………………………………………………………………3
Конструкция и область применения различных типов кабеля (вопрос 18)………4
Тепловой пробой твердых диэлектриков (вопрос 28)……………………………...9
Зависимость пробивного напряжения в твердом диэлектрике от температуры
и частоты (вопрос 30)……………………………………………………………….13
Нагревостойкость твердых и жидких диэлектриков (вопрос 12)………………..15
Основные физико-химические характеристики проводниковых материалов
(вопрос 16)…………………………………………………………………………..16
Классификация магнитных материалов и требования к ним (вопрос 22)………27
Основные виды поляризации (вопрос 4)………………………………………….36
Сверхпроводники и возможности их применения в электротехнике
(вопрос 20)………………………………………………………………………..…41
Векторное изображение электрических величин (тока, напряжения, ЭДС). Примечание комплексных чисел для расчета электрических цепей. Представление синусоидальных э.д.с., напряжений и токов комплексными числами…………………………………………………………………………….51
Ответы на письма в редакцию……………………………………………………………57 Заключение…………………………………………………………………………………59
Список реферативно использованной литературы………………………………………60

Файлы: 1 файл

Реферат по ТКМ Чечкова А.В..doc

— 1.62 Мб (Скачать файл)

     Этот расчет, пригодный только для одномерного потока теплоты, называется графоаналитическим и является приближенным, В нем не учтены перепад температуры по толщине диэлектрика (искажение электрического поля и повышение градиента напряжения в поверхностных слоях), а также теплопроводность материала электродов. Поэтому тепловой пробой часто наступает при напряжении ниже расчетного. Более точные методы расчета разработаны академиками Н.Н. Семеновым и ВА. Фоком только для изделий простейшей конфигурации [16].

 

4    Нагревостойкость твердых и жидких диэлектриков (вопрос 12)

Общефизические характеристики, такие как плотность материала, геометрические размеры, пористость, вязкость, влагостойкость и др., нормируются для каждого вида материала и, следовательно, подлежат определению при его испытании. Кроме того, при определении других характеристик (механических, электрических) часто требуется знать вышеуказанные параметры с некоторой допускаемой погрешностью [2, С.204].

Нагревостойкость – это способность электроизоляционного материала длительно выдерживать предельно допустимую температуру. Для электроизоляционных материалов, применяемых в электрических машинах и аппаратах, установлено семь классов нагревостойкости (таблица 4.1).

 

Таблица 4.1 - Классы нагревостойкости электроизоляционных материалов

Класс нагревостойкости

Предельно допустимая

рабочая температура, °С

Y…………………………………....

90

A……………………………………

105

E…………………………………….

120

B………………………………….....

130

F…………………………………….

155

H…………………………………….

180

C…………………………………….

выше 180


 

К классу Y относятся органические диэлектрики: полистирол, полиэтилен, волокнистые непропитанные материалы на основе целлюлозы, картон, бумаги, хлопчатобумажные ткани и др.

К классу А относятся пропитанные (лаками и другими составами) хлопчатобумажные и шелковые ткани (лакоткани) и бумаги (лакобумаги), а также многие пластмассы – гетинакс, текстолит и др.

В класс Е входят такие материалы, как триацетатцеллюлозные и лавсановые изоляционные пленки, стеклотекстолит на бакелитовой смоле и др.

В класс В входят все клееные слюдяные материалы, в которых применены клеящие составы класса нагревостойкости А или Е (шеллачные, бакелитовые смолы, лаки на основе этих смол и высыхающих растительных масел).

К классу F относятся материалы на основе слюды, асбеста, стеклянных волокон, склеенных лаками повышенной нагревостойкости (полиуретановыми, эпоксидными и др.).

В класс Н входят кремнийорганические лаки и резины, а также композиционные материалы, состоящие из слюды, стеклянных волокон, асбеста, склеенных при помощи кремнийорганических смол и лаков, отличающихся повышенной стойкостью к теплу.

Класс С составляют преимущественно диэлектрики неорганического происхождения (электрокерамика, стекло, микалекс, асбест и др.). Из органических высокополимерных диэлектриков в этот класс входит политетрафторэтилен (фторопласт-4) [2, С.213].

 

  1. Основные физико-химические характеристики

проводниковых материалов (вопрос 16)

 

Проводниковые материалы в основном служат для передачи электрической энергии и ее непосредственного преобразования в тепловую, механическую и другие виды энергии. Проводниками могут служить твердые тела, жидкости и газы. Твердыми проводниками являются металлы, различного рода сплавы, модификации углерода и композиции на их основе. К жидким проводникам относятся расплавленные металлы и различные электролиты. Большинство металлов являются жидкими проводниками лишь при повышенных температурах [2, С.39].

Электролитами являются водные растворы кислот, солей, щелочей и расплавы ионных соединений.

Все газы и пары металлов становятся проводниками при высокой напряженности приложенного электрического поля. Основным условием при этом является возникновение ударной или фотоионизации и газ может стать проводником с электронной и ионной электропроводимостью. При равенстве количества положительных и отрицательных заряженных частиц в объеме сильно ионизированного газа получают равновесную проводящую среду так называемого четвертого состояния вещества – плазму.

К основным характеристикам проводниковых материалов относятся: удельное сопротивление и удельная проводимость; температурный коэффициент удельного электрического сопротивления; термоэлектродвижущая сила (термоэдс); теплопроводность; теплостойкость; предел прочности на разрыв и относительное удлинение при разрыве (рисунок 5.1).

 

Знание этих характеристик позволяет оценить электрические, тепловые и механические свойства проводникового материала.

 

 

Рисунок 5.1 – Схема строения металлического проводника

 

Удельное сопротивление материала r является основной величиной, характеризующей материал проводника. Для измерения удельного сопротивления проводников обычно пользуются образцами, изготовленными из исследуемого материала в виде отрезков проводов неизменного сечения. В этом случае, зная сопротивление R, площадь поперечного сечения S и длину l образца, удельное сопротивление материала можно вычислить, исходя из следующего известного соотношения

            , т.е. .       (5.1)

 

В Международной системе единиц (СИ) r измеряют в омметрах (Ом×м). Однако на практике для оценки удельного сопротивления проводников широко пользуются внесистемной единицей Ом·мм2/м, связанной с единицей СИ соотношением 1 Ом-мм2/м = 10-6 Ом×м = 1 мкОм×м

Удельное сопротивление проводников находится в пределах от 0,016 для серебра до 1,6 мкОм-м для фехралей (жаропрочных сплавов на железохромовой основе), т. е. имеет диапазон в два порядка.

Часто применяется величина, обратная удельному сопротивлению и носящая название удельной проводимости, которая равна

          .      (5.2)

Так как величина, обратная электрическому сопротивлению и называемая проводимостью, измеряется в единицах Си в сименсах (1/Ом = 1 См), то единица удельной проводимости равна 1 См/м.

Удельное сопротивление (а следовательно, и удельная проводимость) в основном зависят от средней длины свободного пробега электрона в данном проводнике, которая, в свою очередь, зависит от строения материала проводника. Все чистые металлы с наиболее правильной кристаллической решеткой характеризуются наименьшими значениями удельного сопротивления, а примеси, искажая решетку, приводят к увеличению его. Даже небольшое наличие примеси (приблизительно 0,5 %) приводит к увеличению ρ на 5 55 %. 

Значительное возрастание ρ наблюдается при сплавлении двух металлов в том случае, если они образуют твердый раствор, т. е. образуют при затвердевании совместную кристаллизацию и атомы одного металла входят в кристаллическую решетку другого [2, С.57].

 Повышенная электропроводность проводниковых материалов обусловлена большим количеством обобществленных электронов, которые классической электронной теорией металлов рассматриваются как электронный газ .

В соответствии с этими представлениями свободные электроны находятся в состоянии хаотического теплового движения со средней скоростью и, сталкиваясь с колеблющимися атомами кристаллической решетки. Среднее расстояние l, проходимое электроном между двумя столкновениями, называют длиной свободного пробега, средний промежуток времени между двумя столкновениями – временем свободного пробега. Время свободного пробега вычисляется по формуле

 

                .     (5.3)

 

Средняя кинетическая энергия электронов, находящихся в непрерывном хаотическом движении, линейно зависит от температуры

 

          ,      (5.4)

 

где Дж/К – постоянная Больцмана. Температуре T= 300 К соответствует м/с.

Распределение электронов по энергетическим состояниям, характеризуемое вероятностью р (Е), подчиняется статистике Максвелла – Больцмана и описывается экспоненциальной функцией

          .      (5.5)

При этом считается, что в каждом энергетическом состоянии может находиться любое число электронов, а при температуре абсолютного нуля энергия всех свободных электронов равна нулю.

Если в проводнике существует электрическое поле, то под действием этого поля электроны приобретают ускорение, пропорциональное напряженности поля Е, в результате чего возникает направленное движение электронов со средней скоростью

           .     (5.6)

Такое направленное движение называют дрейфом электронов, оно накладывается на хаотическое движение электронов. Скорость дрейфа значительно меньше скорости теплового движения. Направленное движение электронов создает ток, плотность которого равна

         ,     (5.7)

где n – концентрация электронов.

Этот ток пропорционален напряженности поля, коэффициентом пропорциональности является удельная электрическая проводимость

         .     (5.8)

 Классическая теория, давая  в целом правильное представление  о механизме электропроводности, не учитывает распределение электронов по энергетическим состояниям. Поэтому она не может объяснить ряд противоречий теории с опытными данными, в частности, классическая теория не в состоянии объяснить низкую теплоемкость электронного газа. Более полное представление о процессах, происходящих внутри вещества, дает современная квантовая физика [2, С.58].

Электропроводность создается свободными электронами, способными покинуть атомы. Такой способностью обладают только валентные электроны. Поэтому в дальнейшем речь пойдет только об электронах, находящихся на энергетических уровнях валентной зоны.

Квантовая физика исходит из того, что электроны могут находиться на строго определенных энергетических уровнях, энергетическая плотность которых вблизи границ энергетических зон изменяется по параболическому закону (рисунок 5.2 а)

 

         ,     (5.9)

где – эффективная масса электрона, учитывающая взаимодействие электрона с периодическим полем кристаллической решетки, то есть это масса свободного электрона, который под действием внешней силы смог бы приобрести такое же ускорение, как и электрон в кристалле под действием той же силы.

Рисунок  5.2 – Энергетическая плотность энергетических уровней электронов

 

В соответствии с принципом Паули на каждом энергетическом уровне могут находиться два электрона с противоположными спинами. Если концентрация свободных электронов равна n, то при температуре абсолютного нуля они займут n/2 самых низких энергетических уровней. Наиболее высокий из занятых уровней называется уровнем Ферми и обозначается Ет. При нагреве кристалла электронам сообщается тепловая энергия порядка kT, вследствие чего некоторые электроны, находящиеся вблизи уровня Ферми, переходят на более высокие энергетические уровни. Избыток энергии, получаемый электронами при нагреве проводника, очень незначителен по сравнению с энергией Ферми, при комнатной температуре он равен 0,026 эВ (1 эВ = 1,61019 Дж). Поэтому средняя энергия свободных электронов сохраняется практически неизменной, а незначительное изменение средней энергии означает малую теплоемкость электронного газа. В квантовой теории вероятность заполнения энергетических уровней электронами определяется функцией Ферми–Дирака (рисунок 5.2,б)

 

               .                                               (5.10)

Из формулы (5.10) следует, что уровень Ферми представляет собой энергетический уровень, вероятность заполнения которого равна 1/2.

Распределение электронов по энергиям (рисунок 5.2, в) определяется энергетической плотностью разрешенных уровней и вероятностью их заполнения

           .                                                    (5.11)

Концентрация электронов может быть найдена путем интегрирования по всем заполненным состояниям

    .           (5.12)

Если считать, что атомы в металле ионизированы однократно, то концентрация свободных электронов будет равна концентрации атомов, которая рассчитывается по формуле

   ,                                                                        (5.13)

где d – плотность материала;

    А – атомная масса;

N0 – число Авогадро (6,02 · 1023 моль-1).

Следовательно, уровень Ферми, отсчитанный от дна валентной зоны, может быть найден из уравнения (5.12)

      .                                                           (5.14)

Величина энергии Ферми для различных металлов лежит в пределах от 3 до 15 эВ. Если в проводнике создать электрическое поле с напряженностью Ет , то электроны, расположенные вблизи уровня Ферми, переходят на более высокие энергетические уровни, приобретая добавочную скорость направленного движения

      ,                                                  (5.15)

Информация о работе Технология конструкционных электротехнических материалов