Трендовые и корреляционные модели

Автор работы: Пользователь скрыл имя, 17 Апреля 2013 в 22:18, курсовая работа

Описание работы

Целью данной курсовой работы является изучение методов получения таких ЭСМ, как трендовые и корреляционные модели, а также определение с их помощью тесноты связей между различными факторами и закономерностей развития описываемых событий. Объектом исследования курсовой работы является данное предприятие, предметом исследования - деятельность предприятия в прогнозе. В главе 1 будут рассмотрены теоретические основы эконометрического прогнозирования, в главе 2 –практическое применение данной теме, а также сделаны выводы о применении данных моделей.

Содержание работы

Введение...........................................................................................................
5
Глава 1. Теоретические основы эконометрического прогнозирования......................................................................................................
7
1.1
Трендовые модели................................................................................
7
1.2
Тренды...................................................................................................
8
1.3
Корреляционный анализ......................................................................
11
Выводы..............................................................................................................
15
Глава 2. Практическое применение моделей прогнозирования..........
16
2.1
Расчет исходных данных........................................................................
16
2.2
Определение средней арифметической................................................
17
2.3
Трендовые модели..................................................................................
18

2.3.1
Трендовые модели с линейной выравнивающей функцией...................................................................................................................
18

2.3.2
Метод расчленения исходных данных динамического ряда.............................................................................................
18

2.3.3
Выравнивание методом наименьших квадратов.....................
20

2.3.4
Выравнивание методом наименьших квадратов с переносом начала координат в середину динамического ряда............................................................................................
21

2.3.5
Трендовые модели с квадратичной выравнивающей функцией..................................................................................
23

2.3.6
Определение коэффициентов вариации трендовых моделей.....................................................................................
24

2.3.7
Интерполяция и экстраполяция по трендовой модели.........
26
2.4
Корреляционные модели.......................................................................
27

2.4.1
Корреляционная модель производственного процесса..........
27

2.4.2
Линейная корреляционная модель...........................................
27

2.4.3
Выравнивание квадратичной функцией.................................
28

2.4.4
Коэффициент корреляции конкурирующих описаний.........
31

2.4.5
Использование модели в оптимизационной задаче..............
32
2.5
Графическое изображение результатов расчета по различным конкурирующим моделям........................................ ..................................
33
Выводы......................................... ......................................... .........................
34
Заключение......................................... ...........................................................
36
Список используемых источников............................................................

Файлы: 1 файл

Трендовые и корреляционные модели.doc

— 724.50 Кб (Скачать файл)

Затем записываются частные  производные по искомым параметрам :А, В и С.

 

         = 2 ∑( Yх – A – Bх - Сх2)*(-1)=0,                                                      (63)


         = 2 ∑( Yх – A – Bх - Сх2)*(-t)=0,                                                       (64)

     = 2 ∑( Yх – A – Bх - Сх2)*(-х2)=0.                                                     (65)

 

Систему (63) – (65) преобразуем  в систему нормальных уравнений

     NА + В∑ х + С∑ х 2 = ∑Yх ,                                                                        (66)


     А∑ х + В∑ х 2 +С∑ х 3 = ∑Yх х,                                                                 (67)

     А∑ х 2 + В∑ х 3 +С∑ х 4 = ∑Yх х 2.                                                              (68)

 

Так как мы используем метод наименьших квадратов с переносом оси  ординат в середину диапазона аргумента ( то есть в точку х=7), то слева от нуля записываются отрицательные значения аргумента х, справа – положительные. В этом случае сумма нечётных степеней аргумента равна нулю (∑х=∑ х 3 = …=0).

Таким образом, система  уравнений примет вид:

 

         NА + С∑ х 2 = ∑Yх ,                                                                                 (69)


         В∑ х 2 = ∑Yх х,                                                                                         (70)

         А∑ х 2 +С∑ х 4 = ∑Yх х 2 .                                                                        (71)

 

Составим новую таблицу  данных в связи с переносом оси ординат в середину диапазона аргумента, то есть в точку х =7

 

 

 

 

 

 

 

 

 

 

 

 

 

Таблица 5 - Новые данные с учетом переноса оси ординат в середину диапазона аргумента

1

2

3

4

5

6

7

Xi

x

x2

X4

Yx

Yxx

Yxx2

100

-6

36

1296

69,2

-415,2

2491,2

200

-5

25

625

72,4

-362

1810

300

-4

16

256

75,6

-302,4

1209,6

400

-3

9

81

84,8

-254,4

763,2

500

-2

4

16

94

-188

376

600

-1

1

1

97,2

-97,2

92,7

700

0

0

0

100,4

0

0

800

1

1

1

97,3

97,3

97,3

900

2

4

16

97,2

194,4

388,8

1000

3

9

81

91,1

273,3

819,9

1100

4

16

256

85

340

1360

1200

5

25

625

84,9

424,5

2122,5

1300

6

36

1296

84,8

508,8

3052,8

-

-

∑x=

182

∑x4=

4550

∑Yt =1133,9

∑Yхх= 219,1

∑Yхх2= 14588,5


 

Подставим известные  нам значения из таблицы 4 и получим:

 

         13A + 182C = 1133,9                                                                             (72)


         182B = 219,1;                                                                                           (73)

         182A + 4550C = 14588,5.                                                                        (74)

Из  (73) получим:

                   B=1.20.

 

Уравнения (72) (74) сводятся к системе:


            13A+182C=1133.9

            A+25C=80.15,

 

Из которой определены коэффициенты А и С:

        A = 96.18;   C= - 0.64.

 Таким образом, уравнение корреляции с квадратической выравнивающей функцией имеет вид:

       = 96.18 + 1,20х – 0,64х2.   (VI)                                           (75)

2.4.4 Коэффициент  корреляции конкурирующих описаний

 

Оценка силы связи  аргумента  с функцией осуществляется с помощью коэффициента корреляции r , определяемого из выражения:

 

   ,                                                                                               (76)

где:       ,     ,   0 ≤ r ≤ 1.                        (77)

 

 

Для квадратичной корреляционной функции (VI) 

   = 96.18 + 1,20х – 0,64х2

находим

 

 ;    

 

 

r = √ (95.15– 11,35) / 95,15 = 0,94.

 

Для линейной  функции (V)

  =78.82+1.20x

дисперсии равны следующим величинам:

.

Коэффициент корреляции оказался равным

           r =√(95.15 – 74.86) /95.15 = 0,46.

По результатам выполненных  расчетов видно, что более достоверной  является квадратичная корреляционная модель (V1), т.к. ее коэффициент корреляции выше (r = 0,94).

 

 

 

 

Таблица 5 - Значения коэффициентов  корреляции для моделей (V) и (VI)

1

2

3

4

5

6

7

8

9

Yx

Yx-Yар

(Yx-Yар)2

Yx (V)

Yx-

(Yx-
)2

Yx(VІ)

Yx-

(Yx-
)2

69,2

-18,02

324,72

80,02

-10,82

117,07

65.94

3,26

10,63

72,4

-14,82

219,63

81,22

-8,82

77,79

74.18

-1,78

3,17

75,6

-11,62

135,02

82,42

-6,82

46,51

81.14

-5,54

30,69

84,8

-2,42

5,85

83,62

1,18

1,39

86.82

-2,02

4,08

94

6,78

45,97

84,82

9,18

84,27

91.22

2,78

7,73

97,2

9,98

99,6

86,02

11,18

124,99

94.34

2,86

8,18

100,4

13,18

173,71

87,22

13,18

173,71

96.18

4,22

17,80

97,3

10,08

101,60

88,42

8,88

78,85

96.74

0,56

0,31

97,2

9,98

99,6

89,62

7,58

57,45

96.02

1,18

1,39

91,1

3,88

15,05

90,82

-0,28

0,078

94.02

-2,92

8,53

85

-2,22

4,93

92,02

-7,02

49,28

90.74

-5,74

32,95

84,9

-2,32

5,38

93,22

-8,32

69,22

86.18

-1,28

1,64

84,8

-2,42

5,86

94,42

-9,62

92,54

80.34

4,46

19,89

∑Yх=1133,9

Yар=87,22

∑=1236,94

Yх=78,82+1,20х

 

∑=973,18

Yх=96,18+1,20х-0,64х2

 

∑=146,99


 

2.4.5 Использование модели в оптимизационной задаче

 

Полученная корреляционная модель

= 96.18 + 1,20х – 0,64х2. 

имеет экстремум и может быть использована в оптимизационных процедурах.

 

          

 

Откуда

 

xопт = 1.20/ 1.28= 0.94.

 

Так как ось ординат смещена на величину (х +7), то хопт = 0,94+7=7,94

Хопт = хопт *100=7,94*100=794( оптимальное количество рабочих на заводе).

Подставим полученное значение хопт в уравнение модели (V1) мы найдём оптимальный выпуск продукции:

max =96.18+1.20*0,94-0.64(0,94)2= 96,18+1.13-0.56=96.75

При оптимальном количестве рабочих на заводе, равном 794 человеку, максимальный выпуск продукции составит 96.75 условных единиц.

 

 

    1. Графическое изображение результатов расчета по различным конкурирующим моделям

 

На рис.5 представлены результаты расчетов по различным конкурирующим  описаниям. Кривые трендовых моделей  изображены в осях (Yt – t), кривые корреляционных моделей – в осях (Yx – x). При переходе к количеству рабочих Х  необходимо произвести пересчет Х = 100х.

Рис. 5 Результаты расчетов по различным конкурирующим описаниям

 

Выводы

 

По полученным исходным данным в  форме множества расчетных точек, имитирующих производительность завода по годам, найдена простая средняя арифметическая производительности. С использованием различных методов получены  трендовые модели с различными выравнивающими функциями:

- для линейной модели:

1. Расчленением динамического  ряда на количество частей, равное количеству коэффициентов выравнивающей функции;

2. Выравниванием с  использованием метода наименьших  квадратов;

3. Выравниванием с  использованием метода наименьших  квадратов и с переносом начала  системы координат в середину  динамического диапазона.

- для квадратичной  модели:

1. Выравниванием с  использованием метода наименьших  квадратов  и с переносом  начала системы координат в  середину динамического диапазона.

Определена точность полученных линейной (Y=78.82+1.20t) и параболической (Y = 96.18 + 1,20t – 0,64t2 ) трендовых моделей с использованием коэффициента вариации. Для линейной трендовой модели он составил 9,91%, а для параболической 3,86%. Чем меньше отклонение, тем точнее модель. Следовательно, точнее параболическая трендовая модель. Осуществлен прогноз на 15-й год (объем производства продукции завода   составил 64,82).

Построена корреляционную модель. В качестве исходной таблицы  данных принята исходная расчетная  таблица для трендовых моделей  путем замены Yx=Yt; Хi=100ti Для упрощения расчетов перешли к новой независимой переменной Xi=xi/100.

Построили корреляционные модели производственного процесса методом наименьших квадратов для  линейной функции и методом наименьших квадратов с переносом начала координат в середину динамического диапазона для квадратичной функции.

Для этих моделей определены коэффициент корреляции конкурирующих  описаний. Для линейной корреляционной модели он составил 0,46, а для квадратичной 0,94. По выполненным расчетам видно, что достоверной является квадратичная  корреляционная модель, так как ее коэффициент корреляции больше.

По полученной квадратичной  корреляционной модели найдено оптимальное  количество рабочих на заводе  = 794 человеку, обеспечивающее оптимальный выпуск продукции = 96,75. Результаты исследований проиллюстрированы на графиках.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение

 

В настоящее время  рынок развивается направленно: цены могут расти, падать, находиться в горизонтальном диапазоне, поэтому выявление тренда (trend), или превалирующего направления движения цен,- база технического анализа и залог успешной торговли. Кроме того, применяются каналы колебаний курсов, когда для четко выраженного тренда одновременно существуют хорошие линии поддержки и сопротивления. Чаще всего для прогнозирования применяются: линейная, экспоненциальная, логистическая, кластерная модели, анализ трендовых линий.

Только комплекс каких-либо факторов в их взаимосвязи может дать более или менее полное представление о характере изучаемого явления, поэтому имеет место многофакторный корреляционный анализ. Необходимо помнить, что использование недостоверной, неточной информации приведет к неправильным результатам анализа и выводам.

Целью курсовой работы являлось изучение  темы «Трендовые и корреляционные модели», а именно, методы получения  таких ЭСМ, как трендовые и корреляционные модели, а также определение с их помощью тесноты связей между различными факторами и закономерностей развития описываемых событий. Для достижения данной цели были изучены основы применения экономико-статистического анализа, проведен анализ финансово производственной деятельности экономического субъекта.

Таким образом, анализ финансового положения предприятия позволяет отследить тенденции его развития, дать комплексную оценку хозяйственной, коммерческой деятельности и служит, таким образом, связующим звеном между выработкой управленческих решений и собственно производственно-предпринимательской деятельностью.

 

 

 

Список используемых источников

 

1)  Н.Т.Катанаев, В.С.Сокологорский. Трендовые и корреляционные модели: методическое пособие по курсовой работе. – М:, 2006

2)http://www.bibliotekar.ru/finance-6/13.htm

3)http://delay-money.com/2009/07/26/postroenie-modeli/

4)http://www.fx-trader.ru/forexread57.htm

5)http://forum.viac.ru/viewtopic.php?p=17394

6)http://delay-money.com/2009/07/26/postroenie-modeli/

7)http://www.leasingworld.ru/ahd_pp/364-metodika-mnozhestvennogo-korreljacionnogo-analiza.html

8) http://www.twirpx.com/files/financial/econometrics/

 

 


Информация о работе Трендовые и корреляционные модели