Автор работы: Пользователь скрыл имя, 21 Мая 2013 в 22:19, лекция
На физиологическом уровне основу здоровья составляет способность организма обеспечивать постоянство своей внутренней среды вопреки внешним изменениям. Согласно принципу гомеостаза, здоровье сохраняется, если поддерживается постоянство внутренней среды организма. И, наоборот, оно ухудшается (возникает болезнь), если нарушение гомеостаза носит устойчивы» характер. (Г.К. Зайцев, 1997).
1. Введение.
2. Понятие «здоровье», его содержание и критерии.
3. Валеология - наука о здоровье и здоровом образе жизни.
4. Педагогика здоровья.
5. Физическая культура как средство сохранения и укрепления здоровья.
6. Основные требования, предъявляемые к здоровому образу жизни студенческой молодежи.
7. Правильный режим дня.
8. Рационализация умственного и физического труда.
9. Жизненная сущность, важнейшие средства и методы закаливания организма.
10. Рациональное питание в здоровом образе жизни.
11. Пагубные воздействия вредных привычек: курения, приема алкоголя и наркотиков.
кислородом, что в практической жизни не всегда может быть в должной мере осуществлено.
При всякой мышечной деятельности повышается поглощение кислорода, и чем она интенсивнее, тем кислорода требуется больше. Например, при ходьбе со скоростью 4 км/ч по ровной дороге потребность в кислороде (по сравнению с состоянием покоя) возрастает в 4 раза, при ходьбе со скоростью 8 км/ч - в 10 раз, а при спортивном беге на короткие и средние дистанции - в 30-50 раз.
Таким образом, существует определенная последовательность включения и преобладания различных путей ресинтеза АТФ по мере продолжения мышечной деятельности: первые 2-3 сек расщепление только АТФ; затем начинается ее ресинтез от 3 до 20 сек - преимущественно за счет КФ; через 30-40 сек максимальной интенсивности достигает гликолиз; в дальнейшей постепенно все больше превалирует аэробное окисление. Наконец в аварийных ситуациях включается последний, самый невыгодный для организма путь ресинтеза АТФ -миокиназный.
В физиологии
труда и спорта принято различать
и подразделять мышечную деятельность
по зонам интенсивности и
Каким же образом происходит регуляция биоэнергетики мышечной системы?
Организм
человека представляет
собой сложнейшую саморегулирующуюся
систему с бесконечным
Главнейшим
и центральным регулятором
реакцию
на все изменения во внешней и
внутренней среде и упорядочивающая
все физиологические
Естественно, что все эти принципы регуляции распространяются и на мышечную систему, на те химические процессы, что происходят в работающих мышцах. Следовательно, биоэнергетическая регуляция в мышцах совершается тремя путями. Это химическая авторегуляция реакций в мышцах, эндокринная регуляция с помощью гормонов и нервная регуляция.
А что же происходит в мышце во время отдыха, когда работа ее заканчивается? Сразу же необходимо оговориться: отдых и покой - далеко не одно и тоже. Покой - состояние пассивное, а отдых активен. Во время отдыха восстанавливаются нормальные (дорабочие) биохимические соотношения в мышцах (и организме в целом), нарушенные мышечной деятельностью, и восполняется то, что было затрачено на эту деятельность.
В момент отдыха регенерируется КФ, гликоген, фосфолипиды, мышечные белки и, конечно, АТФ, в результате чего в мышце устанавливаются дорабочие соотношения ее химических ингредиентов.
Интересно, то, что надо ресинтезировать КФ, гликоген и АТФ, понятно и без специальных объявлений. Но причем же фосфолипиды и белки? До сих пор о них и речи не было. А не говорили мы о них потому, что они не относятся к числу источников энергии мышечной деятельности. Оказывается, что все химические соединения в организме существуют определенный срок, измеряемый "полураспадом жизни", т.е. тем временем, за которое данное вещество наполовину обновит свой состав. Разрушение белков и фосфолипидов не требует больших затрат энергии, а для обратного синтеза это необходимо, и здесь, как во всех биологических процессах, источником энергии служит АТФ. Поэтому в организме всегда существует конкуренция за использование АТФ между функциональной деятельностью в нашем случае - мышечными сокращениями и пластическим обменом (т.е. биологическими синтезами). В состоянии покоя все
уравновешено:
АТФ хватает и на то и на другое.
Но при мышечной деятельности равновесие
смещается в сторону
В результате при интенсивной или очень длительной мышечной деятельности, когда в мышцах возникает дефицит АТФ, процессы разрушения начинают превалировать над процессами обратного синтеза.
Таким образом, восстановление нормальной деятельности мышц началось практически одновременно, а вот заканчивается этот процесс, как во всякой биологической системе, выведенной из состояния равновесия не линейно, а колебательно. Поэтому и восстановление в период отдыха - процесс колебательный. В основе этого колебательного восстановления лежит явление суперкомпенсации. Таким образом, во время отдыха после работы не только восстанавливается дорабочее состояние мышц (и организма в целом), но и на какой-то период создаются условия для повышенной работоспособности.
Характер работы определяет строение и энергетику мышц. Движения человека многосложны и разнообразны. Он может идти, бежать, прыгать, передвигать, поднимать и нести большие тяжести, бросать те или иные предметы, придавая им значительную кинетическую энергию, например спортсмен-дискобол, копьеметатель или толкатель ядра, или солдат, бросивший гранату. А вместе с тем какие тонкие, чрезвычайно точные и быстрые движения руками и пальцами совершает человек, играя на музыкальных инструментах, производя хирургические операции, рисуя миниатюру или изготовляя ювелирное изделие.
Значит, мышца человека способна выполнять различную работу, а это не может не найти отражения в ее строении, и в химических процессах, происходящих в мышцах при разного рода деятельности. Ведь недаром один из классиков естествознания - В. Ру писал, что "функция строит орган".
Еще П.Ф.Лесгафт делил мышцы на сильные и ловкие. Сильные при работе могут проявлять большую силу при незначительном напряжении и долго не утомляться.
Ловкие мышцы отличаются быстротой сокращения. Сильно напрягаясь, они быстро утомляются. Поверхность опоры этих мышц на костях невелика и лежит ближе к точке опоры рычага. Они обладают параллельно расположенными длинными волокнами. Кроме того, у них несколько головок (две-три), которые могут сокращаться изолированно. Все это позволяет такому типу мышц производить мелкие, точные и разнообразные движения.
Выявлена определенная закономерность: чем большую и более длительную нагрузку несет мышца, тем более (выше) в ней возможности дыхательного ресинтеза АТФ.
В мышце имеются волокна, которые, как говорится, "от одних ушли. а к другим не пришли", стоящие по своим свойствам между первым и вторым типом. Их называют переходными волокнами. В зависимости от того, какую работу систематически будет выполнять мышца, они могут превращаться в волокна первого или второго типа.
Известно, какие мышцы в мышечные группы имеют ведущее, решающее значение при выполнении профессиональной двигательной программы. Известны и требования, предъявляемые к этим мышцам: должны ли они работать резко и быстро или обладать выносливостью и малой утомляемостью при длительной работе. Соотношение волокон сильных и ловких в мышце можно до известной степени "переделать" с помощью физического упражнения специальной направленности.
Утомление и его молекулярные механизмы
Кто не испытывал усталости? От длительной или напряженной работы человек устает. Становится все труднее работать, хочется отдохнуть. При этом нередко нужно еще продолжать работу.
Что же такое утомление? Физиологи труда считают, что утомление -состояние организма, возникающее вследствие длительной или напряженной деятельности и характеризующееся снижением работоспособности.
Естественно, что вопрос об утомлении уже давно привлекает внимание ученых и медиков, и физиологов и биохимиков. И каких только гипотез не выдвигали для объяснения утомления! Одни предполагали, что при пышечной деятельности в организме образуются какие-то ядовитые вещества "кинотоксины", и говорили об "отравлении" трудом, другие видели в основе утомления наводнение организма молочной кислотой, третьи ввязывали
утомление
с истощением энергетических ресурсов
организма - КФ и гликогена, четвертые
- с нарушением нормального течения
окислительных процессов в
Но не одна из этих гипотез не оказалась удовлетворительной: никаких "кинотоксинов" обнаружить не удалось; было показано, что утомление может возникать и при низком содержании молочной кислоты в крови и мышцах, что оно нередко не сопровождается резкий истощением энергетических ресурсов организма, что течение окислительных процессов в мышцах может существенно не нарушаться.
В связи с таким положением И.М.Сеченов выдвинул и обосновал важнейшее положение физиологии: организм всегда реагирует как единое целое;
всякое физиологическое отправление организма, всякая реакция его на изменение внешней или внутренней среды есть на престо отправление данного органа, но реакция всего организма, координируемого и интегрируемого центральной нервной системой.
Он писал: "Источник ощущения усталости помещают обыкновенно в работающие мышцы; я же помещаю его ... исключительно в центральную нервную систему". Это высказывание И.М.Сеченова было неправильно понято рядом физиологов и биохимиков. Появилась "нервная теория утомления", в которой все причины утомления искали только в центральной нервной системе и в нарушении передачи двигательного возбуждения с нерва на мышцу, совершенно оставив в стороне сами мышцы.
Итак, утомление
(и в особенности чувство
Как можно повысить физическую работоспособность? Можно ли до¬биться максимальной интенсивности мышечной деятельности и большой продолжительности работы, т.е. выносливости? Конечно можно. И всякому это известно. Известно и как: систематическим упражнением мышц. Во время фазы сверхвосстановления работоспособность на некоторое время возрастает, но затем возвращается к исходной. Отсюда вывод: упражнения необходимо выполнять
повторно и регулярно. Каждую следующую нагрузку нужно осуществлять в наиболее выгодном для организма состоянии после предыдущей нагрузки.
Чтобы под
влиянием упражнений (тренировки) получить
стойкое повышение
В процессе
занятий работоспособность
Чтобы этого не произошло, величина тренировочных нагрузок должна в процессе занятий систематически возрастать (по интенсивности, по длительности, по величине усилий).
Тренировка разными по характеру нагрузками приводит к далеко не одинаковым изменениям в мышцах. Прежде всего, по-разному изменяется структура мышцы. Под влиянием упражнений на выносливость масса мышцы почти не изменяется и совсем не изменяется толщина мышечных волокон (их поперечное сечение).
Совсем иное наблюдается при тренировке скоростными упражнениями. В этом случае весьма существенно увеличивается масса мышцы и толщина ее волокон.
Изменения, вызываемые тренировкой силовыми нагрузками, близки к тому, что рассказано о влиянии скоростных упражнений. Разница здесь в основном количественная. Увеличение массы мышц и толщина волокон еще больше, чем при тренировке быстроты.
Преимуществом же тренировки на развитие выносливости является особо значительное увеличение числа митохондрии - "энергетических станций" мышечного волокна - и их площади. Следовательно, в этом случае в наибольшей степени возрастает возможности процессов аэробного окисления и дыхательного ресинтеза АТФ. Это подтверждается и более значительным повышением интенсивности дыхания мышц и активности ферментов аэробного окисления. Существенно увеличивается и содержание миоглобина - хранителя резерва кислорода в мышце.
Поэтому не случайно, что в физической подготовке человека упражнениям на выносливость придается особое значение. На начальных этапах тренировки во всех видах спорта этим упражнениям уделяется немало времени и внимания. Да и не только в спорте, а во всех случаях, когда с помощью физических упражнений хотят повысить работоспособность. Увеличение возможностей дыхательного ресинтеза АТФ создает базу для успешного и эффективного применения скоростных и силовых упражнений.
В практической жизни, вне спорта, для всякого человека прежде всего необходимы выносливость к длительной мышечной деятельности и возможно более быстрое восстановление работоспособности во время отдыха.