Автор работы: Пользователь скрыл имя, 21 Мая 2013 в 07:41, курс лекций
Значение мясной продукции в питании человека определяется в первую очередь тем, что она призвана обеспечивать организм пищевыми продуктами, являющимися основным источником белкового питания человека. Мясо и мясные продукты содержат помимо белков и другие важные составные части, необходимые для нормальной жизнедеятельности человеческого организма. Ф. Энгельс в своей работе «Диалектика при
Миопротеиды – группа мало изученных сложных белков, имеющих высокую температуру денатурации (около 100 0С). Содержатся в мышечном волокне в незначительном количестве. К группе протеидов относятся также некоторые ферменты мышечного волокна.
Миозин – фибриллярный белок, составляет около 40 % белков волокна. Миозин ультрацентрифугированием разделен на 4 фракции. В издании под миозином подразумевается вся миозиновая фракция. Миозин – полноценный, хорошо переваривающийся белок. Совершенно чистый миозин растворим в воде. При растворении он образует вязкий раствор, содержащий до 4 % белка. Небольшие количества солей щелочных металлов – 0,04-0,25 моль осаждают миозин из его растворов; в солевых растворах повышенной концентрации (до 0,6 моль) он растворяется. Миозин способен взаимодействовать с актином, образуя актомиозин, и с аденозинтрифосфорной кислотой (АТФ), когда он выступает в качестве фермента. При этом образуется аденозиндифосфорная (АДФ) и ортофосфорная кислоты и выделяется энергия, расходуемая на акт мышечного сокращения. Температура денатурации миозина около 45-50 0С (у птицы около 51 0С); изоэлектрическая точка при рН 5,4.
Актин – содержится в количестве около 12-15 %. Актин полноценный белок, переваривается пищеварительными ферментами. Растворим в двухмолярных растворах нейтральных солей при длительном воздействии, осаждается солями кальция. Температура денатурации актина около 50 0С. Под воздействием ионов растворимых солей щелочных и щелочноземельных металлов в определенных концентрациях актин переходит в фибриллярную форму в результате линейной агрегации молекул. По удалении этих солей он снова превращается в глобулярный актин. Фибриллярный актин образуется также при замораживании мышц, вследствие повышения концентрации содержащихся в них солей.
Актомиозин - комплексный белок. При известных условиях миозин SH-группами способен взаимодействовать с оксигруппами фибриллярного актина, образуя актомиозин, который входит в структуру мышечной фибриллы. Такой актомиозин содержит около двух частей миозина и одной части актина. Растворителями извлекается актомиозин, содержащий около 0,25 части актина. В присутствии аденозинтрифосфорной кислоты и в зависимости от её концентрации актомиозин частично или полностью диссоциирует на актин и миозин. Это явление тесно связано с сокращением и посмертным окоченением мышц. В составе мышечной ткани актомиозин в зависимости от условий может находиться в ассоциированной или частью в диссоциированной форме, содержащей неопределенное количество актина. Актомиозин растворим в солевых растворах достаточно высокой концентрации. При этом, чем больше в нем актина, тем выше нужна концентрация соли. При разбавлении актомиозин осаждается. Температура денатурации актомиозина 42-48 0С.
Тропомиозин содержится в волокне в небольшом количестве (около 0,5 %). Он представляет собой фибриллярный белок, по свойствам и аминокислотному составу близок к миозину, но не содержит триптофана. В присутствии нейтральных солей образует вязкие растворы, в которых диспергируется солями на частицы различных размеров. Изоэлектрическая точка при рН 4,6.
Нуклеопротеиды – сложные белки, образованные щелочными белками – гистонами и нуклеиновой кислотой. Составляют небольшую часть белков мышечного волокна. Являются полноценными белками.
Около 6-7 % белков мышечного волокна составляют белки стромы, представленные преимущественно белками типа коллагена и эластина.
Большинство белковых веществ мышечного волокна обладает свойствами ферментов. В состав мышечного волокна входят представители всех групп ферментов: ферменты расщепления с участием воды и ортофосфорной кислоты (гидролазы и фосфорилазы), окислительно-восстановительные ферменты (переносчики электронов), десмолазы, катализирующие расщепление связи между атомами углерода, феразы, катализирующие перенос групп атомов между различными соединениями, изомеразы, катализирующие внутримолекулярные процессы. Поэтому в мышечном волокне возможны любые самые разнообразные ферментативные превращения. Однако после прекращения жизни животного в связи с отсутствием поступления кислорода в клетки на первый план выступает разрушительная деятельность ферментов, преимущественно гидролаз и фосфорилаз, которая приводит к существенным изменениям белковой, липидной и углеводной фракций и многих экстрактивных веществ.
Липиды мышечной ткани. В зависимости от вида и упитанности животных мышечная ткань содержит различное количество липидов. Часть этих липидов, главным образом глицеридов, находится в тончайших прослойках соединительной ткани и легко извлекается органическими растворителями. Другие липиды входят в состав волокна, в том числе как липидные компоненты белковых веществ, и неполностью извлекаются растворителями.
Около 0,20-0,25 % липидов приходится на долю фосфатидов, преимущественно лецитина. В небольшом количестве в мышцах обнаружены стериды и холестерин (50-60 мг % к массе мышц). Часть липидов мышечного волокна и холестерина наряду с белками органически входят в его структуру; другая часть представляет собой промежуточные продукты обмена веществ.
Полиненасыщенные жирные кислоты, фосфолипиды и холестерин - необходимые компоненты пищи. По данным Института питания АМН, суточная потребность в полиненасыщенных кислотах в среднем составляет 3-6 г, в фосфолипидах – 5 г, в холестерина – 0,3-0,6 г.
Прочие органические вещества. Большинство этих веществ извлекается (экстрагируется) при обработке мяса водой. Их поэтому обычно называют экстрактивными веществами. Многие из них претерпевают глубокие химические изменения с момента прекращения жизненных процессов в тканях, образуя другие вещества. Поэтому состав этой фракции мышечной ткани качественно и количественно непостоянен, в связи с чем изменяются и некоторые важные свойства мяса.
Прочие органические вещества мышечной ткани соответственно особенностям их состава и значению можно разделить на три группы: азотистые, безазотистые, витамины. В свою очередь азотистые небелковые вещества разделяются на азотистые основания, аминокислоты и прочие азотистые вещества.
Азотистые основания представлены основаниями группы карнозина (карнозин, ансерин), основаниями группы креатина (креатин, креатинин, метилгуанидин), основаниями группы холина (холин, карнитин, бетаин) и пуриновыми и пиримидиновыми основаниями (аденин, гуанин, гипоксантин).
Общее содержание свободных аминокислот в мышечной ткани незначительно и не превышает 0,7% к её массе. Их состав непостоянен и меняется с течением времени после прекращения жизни животного.
Из прочих азотистых небелковых веществ наиболее важными являются креатинфосфорная (КРФ), аденозинтрифосфорная (АТФ), аденозиндифосфорная (АДФ), аденозинмонофосфорная, или адениловая (АМФ), инозиновая кислоты, глютатион, глютамин, мочевина, аммонийные соли.
Несмотря на сравнительно небольшое относительное содержание азотистых экстрактивных веществ, их роль в питании значительна, так как они включают вкусовые, ароматические и биологически активные вещества. Сырое мясо обладает слабым кисловатым вкусом и запахом. Специфический аромат и вкус, присущие каждому виду мяса, появляются лишь после тепловой обработки, таким образом, в сыром мясе содержатся компоненты, которые, видоизменяясь при нагреве, образуют ароматические и вкусовые вещества.
Можно полагать, что специфичность запаха вареного мяса связана с составом липидной фракции мышечной ткани, так как запах различных видов обезжиренного мяса мало отличается.
Вопрос о том, какие именно вещества придают мясу его специфические аромат и вкус после тепловой обработки, еще до конца не решен. Однако экспериментально доказана связь вкуса мяса с содержанием в нем свободной глютаминовой кислоты и свободных пуринов, в частности гипоксантина. Количество этих веществ в мышечной ткани различно и зависит от глубины развития посмертных изменений в тканях, в частности от степени распада амида глютаминовой кислоты – глютамина и аденозинтрифосфорной кислоты. Запахом бульона обладает также кетомасляная кислота.
В числе экстрактивных веществ находятся раздражители секреции желудочных желез. Как установлено И.П. Павловым, без них мясо остается в желудке долгое время, практически не перевариваясь. Мясной экстракт (или навар) он относит к лучшим возбудителям желудочного сока. Эти свойства мясного экстракта обусловлены содержащимися в мышцах некоторыми азотистыми основаниями (метилгуанидином, карнозином, карнитином).
В число важнейших безазотистых органических компонентов мышечной ткани входят гликоген и продукты его фосфоролиза (гексозофосфорные эфиры, молочная кислота) и амилолиза (декстрины, мальтоза, глюкоза). Их количество зависит от физиологического состояния животных перед убоем и от глубины развития автолитических процессов после убоя, в ходе которых гликоген расщепляется до низкомолекулярных соединений.
Часть гликогена мышечного волокна связана с белками (миозином, миогеном), другая находится в свободном состоянии. Количество гликогена в парном мясе в среднем составляет 450-900 мг %, но может превышать 1 %. В мышцах плохо откормленных, истощенных и больных животных его в 2-3 раза меньше, чем в мышцах откормленных животных, находящихся в нормальном физиологическом состоянии. В разных мышцах содержание гликогена различно: в усиленно работающих мышцах его почти в 1,5 раза больше, чем в мышцах мало работающих.
Соответственно количеству гликогена изменяется и содержание в мышцах продуктов его распада, в том числе и молочной кислоты. Её количество колеблется в пределах 150-700 мг % и наряду с некоторыми другими кислотами (фосфорной, пировиноградной, янтарной) определяют величину рН мышечной ткани. Количество моносахаридов в пересчете на глюкозу колеблется в пределах 0,09-0,6 мг %.
В составе мышечной ткани имеются почти все водорастворимые витамины: В1 (тиамин), В2 (рибофлавин), В6 (пиридоксин), РР (никотинамид), В3 (пантотеновая кислота), В12, биотин (витамин Н), фолиевая кислота. Для различных видов животных и разного их состояния количество витаминов не одинаково.
К витаминам относится также холин, содержащийся в мышцах в количестве 80-100 мг %. В липидной части мышц содержится некоторое (около 0,02 мг%) количество витамина А.
Минеральные вещества. В составе мышечной ткани найдены металлы: калий, натрий, кальций, магний, железо, цинк. Эти металлы частью связаны с белковыми коллоидами мышечного волокна, заряженными в большинстве отрицательно, частью с неорганическими анионами пиро - и ортофосфорной, серной, соляной, угольной кислот, с которыми образуют электролиты. В белках мышц больше катионов, чем анионов, в мышечной жидкости, наоборот. Некоторые из электролитов (соли угольной, фосфорной кислот) играют роль буферных систем мышечного волокна. Железо входит в состав миоглобина. Количество минеральных фосфорных соединений изменяется в связи с распадом орга-
нических фосфорсодержащих составных частей мышечной ткани. В мышцах в незначительном количестве (порядка 0,06-0,08 мг %) содержатся микроэлементы: медь, марганец, никель, кобальт и другие, являющиеся компонентами ферментных систем.
Соединительная ткань. Основу соединительной ткани составляют коллагеновые и эластиновые волокна. Коллагеновые волокна - преимущественно лентовидной формы, но известно до пяти морфологических вариантов; эластиновые волокна - нитевидной формы. Коллагеновые и эластиновые волокна вместе с перепонками образуют губчатую структуру соединительной ткани, в ячейках которой содержится тканевая жидкость. Клеточные элементы в соединительной ткани немногочисленны, хотя и разнообразны (рис. 2.2).
Высокая прочность коллагеновых
и упругость эластиновых
Химический состав соединительной ткани различен и зависит главным образом от соотношения в ней количества коллагеновых и эластиновых волокон. В некоторых видах соединительной ткани (рыхлая соединительная ткань, сухожилия) преобладает коллаген и в таких тканях несколько больше воды. Другие виды соединительной ткани содержат больше эластина и беднее водой. Так, в состав сухожилий входит до 32 % коллагена и лишь 0,7 % эластина, а в состав выйной связки – до 32 % эластина и лишь 1,6 % коллагена.
В соединительной ткани любого вида большую часть сухого остатка составляют коллаген и эластин, но количественное соотношение их различно. Свойства, пищевая ценность и промышленное значение соединительной ткани определяется свойствами коллагена и эластина и их количественным соотношением.
В зависимости от анатомического происхождения соединительной ткани различают коллаген волокнистый (сухожилия и кожа), гиалиновый (кость), хондриновый (хрящи). Аминокислотный состав коллагенов разного происхождения несколько отличается, но во всех случаях в коллагене очень мало метионина и отсутствует триптофан.
Нативный коллаген нерастворим в воде, но набухает в ней. Он медленно переваривается пепсином и почти не переваривается трипсином и панкреатическим соком, но расщепляется коллагеназой на цепочки параллельно оси волок-
на. При нагреве коллагена до 60-70 0С и тщательной механической деструкции переваривающее действие пепсина усиливается. Таким образом, коллаген, хотя и сравнительно медленно, все же может усваиваться организмом. Однако поскольку он относится к неполноценным белкам, употребление в пищу продуктов с большим содержанием коллагена обуславливает отрицательный баланс азота: организм выделяет его больше, чем получает с пищей. В умеренных количествах коллаген сберегает в пище полноценные белки.