Напряженное и деформированное состояние

Автор работы: Пользователь скрыл имя, 17 Июня 2012 в 18:58, доклад

Описание работы

Различают три вида напряженного состояния:
1) линейное напряженное состояние — растяжение (сжатие) в одном направлении;
2) плоское напряженное состояние — растяжение (сжатие) по двум направлениям;
3) объемное напряженное состояние — растяжение (сжатие) по трем взаимно перпендикулярным направлениям.

Файлы: 1 файл

шпоры по сопромату.docx

— 678.70 Кб (Скачать файл)

1-ая  теория прочности (теория наибольших нормальных напряжений): причиной наступления предельного напряженного состояния являются наибольшие нормальные напряжения.   smax= s1£ [s]. Главный недостаток: не учитываются два других главных напряжения. Подтверждается опытом только при растяжении весьма хрупких материалов (стекло, гипс). В настоящее время практически не применяется.

2-ая  теория прочности (теория наибольших относительных деформаций): причиной наступления предельного напряженного состояния являются наибольшие удлинения.  emax= e1£ [e]. Учитывая, что e1= , m — коэффициент Пуассона, получаем условие прочности sэквII= s1m(s2 + s3)£ [s]. sэкв — эквивалентное (расчетное) напряжение. В настоящее время теория используется редко, только для хрупких материалов (бетон, камень).

3-я  теория прочности (теория наибольших касательных напряжений): причиной наступления предельного напряженного состояния являются наибольшие касательные напряжения tmax £ [t],   tmax= , условие прочности: sэквIII= s1s3£ [s]. Основной недостаток – не учитывает влияние s2.

 При  плоском напряженном состоянии: sэквIII= £ [s]. При sy=0 получаем Широко используется для пластичных материалов.

4-я  теория прочности (энергетическая теория): причиной наступления предельного напряженного состояния являются величина удельной потенциальной энергии изменения формы. uф£[uф]. .

Учитывает, все  три главных напряжения. При плоском  напряженном состоянии: . При sy=0,

Широко используется для пластичных материалов.

Теория  прочности Мора Получена на основе кругов напряжений Мора. . Используется при расчетах хрупких материалов, у которых допускаемые напряжения на растяжение [sp] и сжатие [sс] не одинаковы (чугун).

Для пластичных материалов [sp]=[sс] теория Мора превращается в 3-ю теорию.

Круг  Мора (круг напряжений). Координаты точек круга соответствуют нормальным и касательным напряжениям на различных площадках. Откладываем от оси s из центра С луч под углом 2a (a>0, то против час.стр.), находим точку D,

координаты которой: sa,ta. Можно графически решать как прямую, так и обратную задачи. 

Чистый  сдвиг

Чистый сдвиг — напряженное состояние, при котором по взаимно перпендикулярным площадкам (граням) элемента возникают только касательные напряжения. Касательные напряжения , где Q — сила, действующая вдоль грани, F — площадь грани. Площадки, по которым действуют только касательные напряжения, называются площадками чистого сдвига. Касательные напряжения на них — наибольшие. Чистый сдвиг можно представить как одновременное сжатие и растяжение, происходящее по двум взаимно перпендикулярным направлениям. Т.е. это частный случай плоского напряженного состояния, при котором главные напряжения: s1= — s3 = ts2= 0. Главные площадки составляют с площадками чистого сдвига угол 45о.

При деформации элемента, ограниченного  площадками чистого сдвига, квадрат  превращается в ромб.  d — абсолютный сдвиг,

  g » относительный сдвиг или угол сдвига. 
 
 
 
 
 
 
 

Закон Гука при сдвиге: g = t/G   или t = G×g .

G — модуль сдвига или модуль упругости второго рода [МПа] — постоянная материала, характеризующая способность сопротивляться деформациям при сдвиге.   (Е — модуль упругости, m— коэффициент Пуассона).

Потенциальная энергия при сдвиге:  .

Удельная  потенциальная энергия деформации при сдвиге:  ,

где V=а×F — объем элемента. Учитывая закон Гука,  .

Вся потенциальная  энергия при чистом сдвиге расходуется только на изменение формы, изменение объема при деформации сдвига равно нулю.

Круг Мора при  чистом сдвиге. 
 
 
 
 
 
 
 
 
 
 
 

Кручение

Такой вид деформации, при котором  в поперечных сечениях возникает только одни крутящие моменты — Мк. Знак крутящего момента Мк удобно определять по направлению внешнего момента. Если при взгляде со стороны сечения внешний момент направлен против час.стр., то Мк>0 (встречается и обратное правило). При кручении происходит поворот одного сечения относительно другого на угол закручивания -j. При кручении круглого бруса (вала) возникает напряженное состояние чистого сдвига (нормальные напряжения отсутствуют), возникают только касательные напряжения. Принимается, что сечения плоские до закручивания остаются плоскими и после закручивания — закон плоских сечений. Касательные напряжения в точках сечения изменяются пропорционально расстоянию точек от оси. Из закона Гука при сдвиге: t=gG, G — модуль сдвига,  , — полярный момент сопротивления круглого сечения. Касательные напряжения в центре равны нулю, чем дальше от центра, тем они больше. Угол закручивания , GJpжесткость сечения при кручении. относительный угол закручивания. Потенциальная энергия при кручении: . Условие прочности: , [t] = , для пластичного материала за tпред принимается предел текучести при сдвиге tт, для хрупкого материала – tв – предел прочности, [n] – коэффициент запаса прочности. Условие жесткости при кручении: qmax£[q] – допустимый угол закручивания.

Кручение  бруса прямоугольного сечения

При этом нарушается закон плоских  сечений, сечения некруглой формы  при кручении искривляются – депланация поперечного сечения.

Эпюры касательных напряжений прямоугольного сечения.

,  Jk и Wk — условно называют моментом инерции и моментом сопротивления при кручении. Wk= ahb2,

Jk= bhb3, Максимальные касательные напряжения tmax будут посредине длинной стороны, напряжения по середине короткой стороны:  t= g×tmax, коэффициенты: a,b,g  приводятся в справочниках в зависимости от отношения h/b (например, при h/b=2, a=0,246; b=0,229; g=0,795. 
 
 
 

Изгиб

Плоский (прямой) изгиб — когда изгибающий момент действует в плоскости, проходящей через одну из главных центральных осей инерции сечения, т.е. все силы лежат в плоскости симметрии балки. Основные гипотезы (допущения): гипотеза о не надавливании продольных волокон: волокна, параллельные оси балки, испытывают деформацию растяжения – сжатия и не оказывают давления друг на друга в поперечном направлении; гипотеза плоских сечений: сечение балки, плоское до деформации, остается плоским и нормальным к искривленной оси балки после деформации. При плоском изгибе в общем случае возникают внутренние силовые факторы: продольная сила N, поперечная сила Q и изгибающий момент М. N>0, если продольная сила растягивающая; при М>0 волокна сверху балки сжимаются, снизу растягиваются.   .

Слой, в котором отсутствуют удлинения, называется нейтральным слоем (осью, линией). При N=0 и Q=0, имеем случай чистого изгиба. Нормальные напряжения: , r — радиус кривизны нейтрального слоя, y — расстояние от некоторого волокна до нейтрального слоя. Закон Гука при изгибе: , откуда (формула Навье): , Jx — момент инерции сечения относительно главной центральной оси, перпендикулярной плоскости изгибающего момента, EJx — жесткость при изгибе, — кривизна нейтрального слоя.

Максимальные  напряжения при изгибе возникают  в точках, наиболее удаленных от нейтрального слоя: , Jx/ymax=Wx—момент сопротивления сечения при изгибе, .

Если сечение не имеет горизонтальной оси симметрии, то эпюра нормальных напряжений s не будет симметричной. Нейтральная ось сечения проходит через центр тяжести сечения. Формулы для определения нормального напряжения для чистого изгиба приближенно годятся и когда Q¹0. Это случай поперечного изгиба. При поперечном изгибе, кроме изгибающего момента М,  действует поперечная сила Q и в сечении возникают не только нормальные s, но и касательные t  напряжения. Касательные напряжения определяются формулой Журавского: , где Sx(y) — статический момент относительно нейтральной оси той части площади, которая расположена ниже или выше слоя, отстоящего на расстоянии "y" от нейтральной оси; Jx — момент инерции всего поперечного сечения относительно нейтральной оси, b(y) — ширина сечения в слое, на котором определяются касательные напряжения.

Для прямоугольного сечения: , F=b×h, для круглого сечения: , F=R2, для сечения любой формы ,

k— коэфф., зависящий от формы сечения (прямоугольник: k= 1,5; круг - k= 1,33).

Mmax и Qmax определяются из эпюр изгибающих моментов и поперечных сил. Для этого балка разрезается на две части и рассматривается одна из них.  

Действие отброшенной части  заменяется внутренними силовыми факторами М и Q, которые определяются из уравнений равновесия. В некоторых вузах момент М>0 откладывается вниз, т.е. эпюра моментов строится на растянутых волокнах. При Q= 0 имеем экстремум эпюры моментов. Дифференциальные зависимости между М,Q и q:

q — интенсивность распределенной нагрузки [кН/м]

Главные напряжения при поперечном изгибе:

. 

Расчет  на прочность при  изгибе: два условия прочности, относящиеся к различным точкам балки: а) по нормальным напряжениям , (точки наиболее удаленные от С); б) по касательным напряжениям , (точки на нейтр.оси). Из а) определяют размеры балки: , которые проверяют по б). В сечениях балок могут быть точки, где одновременно большие нормальные и большие касательные напряжения. Для этих точек находятся эквивалентные напряжения, которые не должны превышать допустимых. Условия прочности проверяются по различным теориям прочности

Информация о работе Напряженное и деформированное состояние