Автор работы: Пользователь скрыл имя, 17 Июня 2012 в 18:58, доклад
Различают три вида напряженного состояния:
1) линейное напряженное состояние — растяжение (сжатие) в одном направлении;
2) плоское напряженное состояние — растяжение (сжатие) по двум направлениям;
3) объемное напряженное состояние — растяжение (сжатие) по трем взаимно перпендикулярным направлениям.
1-ая теория прочности (теория наибольших нормальных напряжений): причиной наступления предельного напряженного состояния являются наибольшие нормальные напряжения. smax= s1£ [s]. Главный недостаток: не учитываются два других главных напряжения. Подтверждается опытом только при растяжении весьма хрупких материалов (стекло, гипс). В настоящее время практически не применяется.
2-ая теория прочности (теория наибольших относительных деформаций): причиной наступления предельного напряженного состояния являются наибольшие удлинения. emax= e1£ [e]. Учитывая, что e1= , m — коэффициент Пуассона, получаем условие прочности sэквII= s1 — m(s2 + s3)£ [s]. sэкв — эквивалентное (расчетное) напряжение. В настоящее время теория используется редко, только для хрупких материалов (бетон, камень).
3-я теория прочности (теория наибольших касательных напряжений): причиной наступления предельного напряженного состояния являются наибольшие касательные напряжения tmax £ [t], tmax= , условие прочности: sэквIII= s1 — s3£ [s]. Основной недостаток – не учитывает влияние s2.
При
плоском напряженном состоянии:
4-я теория прочности (энергетическая теория): причиной наступления предельного напряженного состояния являются величина удельной потенциальной энергии изменения формы. uф£[uф]. .
Учитывает, все три главных напряжения. При плоском напряженном состоянии: . При sy=0,
Широко используется для пластичных материалов.
Теория прочности Мора Получена на основе кругов напряжений Мора. . Используется при расчетах хрупких материалов, у которых допускаемые напряжения на растяжение [sp] и сжатие [sс] не одинаковы (чугун).
Для пластичных материалов [sp]=[sс] теория Мора превращается в 3-ю теорию.
Круг Мора (круг напряжений). Координаты точек круга соответствуют нормальным и касательным напряжениям на различных площадках. Откладываем от оси s из центра С луч под углом 2a (a>0, то против час.стр.), находим точку D,
координаты
которой: sa,ta. Можно графически решать
как прямую, так и обратную задачи.
Чистый сдвиг
Чистый сдвиг — напряженное состояние, при котором по взаимно перпендикулярным площадкам (граням) элемента возникают только касательные напряжения. Касательные напряжения , где Q — сила, действующая вдоль грани, F — площадь грани. Площадки, по которым действуют только касательные напряжения, называются площадками чистого сдвига. Касательные напряжения на них — наибольшие. Чистый сдвиг можно представить как одновременное сжатие и растяжение, происходящее по двум взаимно перпендикулярным направлениям. Т.е. это частный случай плоского напряженного состояния, при котором главные напряжения: s1= — s3 = t; s2= 0. Главные площадки составляют с площадками чистого сдвига угол 45о.
При деформации элемента, ограниченного площадками чистого сдвига, квадрат превращается в ромб. d — абсолютный сдвиг,
g »
— относительный
сдвиг или угол сдвига.
Закон Гука при сдвиге: g = t/G или t = G×g .
G — модуль сдвига или модуль упругости второго рода [МПа] — постоянная материала, характеризующая способность сопротивляться деформациям при сдвиге. (Е — модуль упругости, m— коэффициент Пуассона).
Потенциальная энергия при сдвиге: .
Удельная
потенциальная энергия
где V=а×F — объем элемента. Учитывая закон Гука, .
Вся потенциальная энергия при чистом сдвиге расходуется только на изменение формы, изменение объема при деформации сдвига равно нулю.
Круг Мора при
чистом сдвиге.
Такой вид деформации, при котором в поперечных сечениях возникает только одни крутящие моменты — Мк. Знак крутящего момента Мк удобно определять по направлению внешнего момента. Если при взгляде со стороны сечения внешний момент направлен против час.стр., то Мк>0 (встречается и обратное правило). При кручении происходит поворот одного сечения относительно другого на угол закручивания -j. При кручении круглого бруса (вала) возникает напряженное состояние чистого сдвига (нормальные напряжения отсутствуют), возникают только касательные напряжения. Принимается, что сечения плоские до закручивания остаются плоскими и после закручивания — закон плоских сечений. Касательные напряжения в точках сечения изменяются пропорционально расстоянию точек от оси. Из закона Гука при сдвиге: t=gG, G — модуль сдвига, , — полярный момент сопротивления круглого сечения. Касательные напряжения в центре равны нулю, чем дальше от центра, тем они больше. Угол закручивания , GJp — жесткость сечения при кручении. — относительный угол закручивания. Потенциальная энергия при кручении: . Условие прочности: , [t] = , для пластичного материала за tпред принимается предел текучести при сдвиге tт, для хрупкого материала – tв – предел прочности, [n] – коэффициент запаса прочности. Условие жесткости при кручении: qmax£[q] – допустимый угол закручивания.
При этом нарушается закон плоских сечений, сечения некруглой формы при кручении искривляются – депланация поперечного сечения.
Эпюры касательных напряжений прямоугольного сечения.
; , Jk и Wk — условно называют моментом инерции и моментом сопротивления при кручении. Wk= ahb2,
Jk= bhb3,
Максимальные касательные напряжения tmax
будут посредине длинной стороны, напряжения
по середине короткой стороны: t= g×tmax,
коэффициенты: a,b,g приводятся в справочниках
в зависимости от отношения h/b (например,
при h/b=2, a=0,246; b=0,229; g=0,795.
Плоский (прямой) изгиб — когда изгибающий момент действует в плоскости, проходящей через одну из главных центральных осей инерции сечения, т.е. все силы лежат в плоскости симметрии балки. Основные гипотезы (допущения): гипотеза о не надавливании продольных волокон: волокна, параллельные оси балки, испытывают деформацию растяжения – сжатия и не оказывают давления друг на друга в поперечном направлении; гипотеза плоских сечений: сечение балки, плоское до деформации, остается плоским и нормальным к искривленной оси балки после деформации. При плоском изгибе в общем случае возникают внутренние силовые факторы: продольная сила N, поперечная сила Q и изгибающий момент М. N>0, если продольная сила растягивающая; при М>0 волокна сверху балки сжимаются, снизу растягиваются. .
Слой, в котором отсутствуют
Максимальные напряжения при изгибе возникают в точках, наиболее удаленных от нейтрального слоя: , Jx/ymax=Wx—момент сопротивления сечения при изгибе, .
Если сечение не имеет горизонтальной оси симметрии, то эпюра нормальных напряжений s не будет симметричной. Нейтральная ось сечения проходит через центр тяжести сечения. Формулы для определения нормального напряжения для чистого изгиба приближенно годятся и когда Q¹0. Это случай поперечного изгиба. При поперечном изгибе, кроме изгибающего момента М, действует поперечная сила Q и в сечении возникают не только нормальные s, но и касательные t напряжения. Касательные напряжения определяются формулой Журавского: , где Sx(y) — статический момент относительно нейтральной оси той части площади, которая расположена ниже или выше слоя, отстоящего на расстоянии "y" от нейтральной оси; Jx — момент инерции всего поперечного сечения относительно нейтральной оси, b(y) — ширина сечения в слое, на котором определяются касательные напряжения.
Для прямоугольного сечения: , F=b×h, для круглого сечения: , F=p×R2, для сечения любой формы ,
k— коэфф., зависящий от формы сечения (прямоугольник: k= 1,5; круг - k= 1,33).
Mmax и Qmax определяются из эпюр
изгибающих моментов и поперечных сил.
Для этого балка разрезается на две части
и рассматривается одна из них.
Действие отброшенной части заменяется внутренними силовыми факторами М и Q, которые определяются из уравнений равновесия. В некоторых вузах момент М>0 откладывается вниз, т.е. эпюра моментов строится на растянутых волокнах. При Q= 0 имеем экстремум эпюры моментов. Дифференциальные зависимости между М,Q и q:
q — интенсивность распределенной нагрузки [кН/м]
Главные напряжения при поперечном изгибе:
.
Расчет на прочность при изгибе: два условия прочности, относящиеся к различным точкам балки: а) по нормальным напряжениям , (точки наиболее удаленные от С); б) по касательным напряжениям , (точки на нейтр.оси). Из а) определяют размеры балки: , которые проверяют по б). В сечениях балок могут быть точки, где одновременно большие нормальные и большие касательные напряжения. Для этих точек находятся эквивалентные напряжения, которые не должны превышать допустимых. Условия прочности проверяются по различным теориям прочности