Автор работы: Пользователь скрыл имя, 24 Апреля 2013 в 20:24, курсовая работа
Изучение моделей с дискретными зависимыми переменными является важным разделом эконометрики. Модели с дискретными зависимыми переменными имеют не только теоретическое, но и практическое значение. Примерами экономических моделей с дискретными зависимыми переменными являются модели потребительского выбора, модели фирмы, модели экономического
ВВЕДЕНИЕ………………………………………………………………………3
Глава 1. Понятие моделей с дискретными зависимыми переменными………………………………………………………………….
Глава 2. Модели бинарного выбора ………………………………………...
Глава 3. Модели множественного выбора …………………………………
Глава4. Модели счетных данных ……………………………………………
ЗАКЛЮЧЕНИЕ……………………………………………………………….…
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ….…………………………
Из выражения (10.92) непосредственно следует, что независимые переменные wt, которые характеризуют индивидуума (но не характеризуют альтернативный вариант), действительно не будут влиять на распределение вероятностей выбора.
Для учета влияния признаков индивидуумов в модели (10.91) необходимо сформировать несколько другую структуру векторов ztj, отличающуюся от структуры, определенной выражением (10.85). Вектора ztj должны выглядеть следующим образом:
где L – число компонент в векторе wt.
В рассмотренном выше примере, когда индивидуум с доходом Dt выбирает один из трех торговых центров в соответствии с выражением (10.93) вектора ztjпримут следующий вид:
zt1=(K1, Rt1,Dt, 0);
zt2=(K2, Rt2, 0, Dt); (10.94)
zt3=(K3, Rt3, 0, 0).
где Kj – число магазинов в j-м торговом центре, Rtj – расстояние от дома t-го индивидуума до j-го торгового центра.
Таким образом, вероятность выбора t-м индивидуумом j-го альтернативного варианта ставится в зависимость и от характеристик варианта и от характеристик индивидуумов. Однако на практике обычно формируются модели, содержащие только какой-либо один набор однородных факторов.Logit-модель, учитывающая влияние на вероятность выбора t-м индивидуумом j-го альтернативного варианта факторов хtj, включающих характеристики варианта j и совместные характеристики варианта j и индивидуума t, называются условной logit-моделью. Заметим, что в условной logit-модели наряду с ранее отмеченными свойствами независимости ошибок и их распределения по закону Вейбулла также предполагается, что ошибки гомоскедастичны.
Для условной logit-модели вероятности Р(уt=j), j=1,...,J также могут быть определены на основе выражения (10.92). Маржинальные эффекты непрерывных независимых переменных х могут быть получены путем дифференцирования вероятностей по факторам х:
=[Pj×(d–Pk)]×a*,
где d=1, если j=k, и d=0 – в противном случае. (Для избежания путаницы в обозначениях индексы наблюдений здесь опущены).
При практическом использовании условной logit-модели часто выясняется, что предположение о независимости ошибок etj не соответствует действительности. Например, при выборе одного из трех торговых центров может оказаться, что количество магазинов в первом из них вдвое больше, чем во втором (K1=2K2), но и расстояние до него вдвое больше, чем до второго (Rt1=2Rt2). Ошибки et1 и et2 в этом случае определяются как
et1=ln1–a12K2–a22Rt2;
et2=ln2–a1K2–a2Rt2.
Из выражения (10.96) следует, что ошибки являются зависимыми:
et1=–2(ln2–et2).
Зависимость ошибок влечет за собой потерю эффективности оценок параметров a условной logit-модели, полученных при использовании “традиционных” методов оценивания.
Вместе с тем, если рассмотреть несколько другую процедуру выбора t-м индивидуумом альтернативных вариантов, то неэффективность оценок модели можно устранить. В частности, это можно сделать, сформировав последовательную процедуру выбора, на каждом шаге которой выбирается одно из двух возможных решений. Такая процедура может быть описана многомерной probit-моделью, которая может быть представлена в следующем виде:
ytj=a¢×xj+etj
(ytj=1, если индивидуум t выбрал вариант j;
ytj=0 – в противном случае);
[e1,e2,..., eJ]~N[0, S]. (10.98)
где xj – вектор независимых переменных, характеризующих j-й вариант, a– вектор параметров модели; ej – ошибка модели, распределенная по нормальному закону с нулевым средним и ковариационной матрицей S (в общем случае неизвестной).
Рассмотрим следующий пример, отражающий особенности применения данного подхода. Предположим, что изучается выбор одного из трех видов транспорта для поездки на работу (автомобиль, автобус, метро). Введем три бинарные переменные соответствующие каждому средству передвижения: y1=1, если выбран автомобиль, y1=0 для всех остальных видов транспорта; y2=1, если выбран автобус, y2=0 для всех остальных видов транспорта; y3=1, если выбрано метро, y3=0 для всех остальных видов транспорта. Требуется оценить следующий набор вероятностей: P(y1=1); P(y2=1) и P(y3=1).
Выбор одного из трех альтернативных вариантов можно описать в виде “дерева” последовательных решений, в узлах которого происходит бинарный выбор (см. рис 10.3).
автомобиль
y1=0
y2=1
y2=0
Рис.10.3. Последовательность выбора одной из трех альтернатив
В каждом
узле, используя бинарные модели, можно
оценить условную вероятность выбора
соответствующего варианта. Безусловная
вероятность его выбора вычисляется
по формуле умножения
P(y3=1)=P(y2=0, y1=0)=P(y2=0)×P(y2=0|y1=0).
Вероятность P(y2=0) оценивается с использованием бинарной probit-модели (10.50), вероятность P(y2=0|y1=0) –на основе выражения (10.74)..
Гнездовыеlogit-модели (nested logit-models).
Как было отмечено, в условной logit-модели ошибки обычно предполагаются гомоскедастичными. Для практики это предположение часто является слишком строгим. Например, в случае выбора одного из трех торговых центров при условии, что количество магазинов в первом из них вдвое больше, чем во втором (K1=2K2), а расстояние до первого вдвое больше, чем до второго (Rt1=2Rt2), дисперсии ошибок e1 и e2 эконометрической модели, связывающей данные выбора первого и второго торгового центра с влияющими на этот выбор факторами (см. выражение (10.96)), определяются следующим образом:
где T – число наблюдений.
Если , то D(e1)¹D(e2), т. е. ошибки ej гетероскедастичны.
Один из способов ослабить предположение о гомоскедастичности ошибок в условной logit-модели связан с изменением процедуры выбора альтернативных вариантов. В этом случае варианты разделяются на непересекающиеся группы таким образом, что внутри группы дисперсии ошибок etj уравнения (10.84) являются одинаковыми, а дисперсии ошибок разных групп между собой различаются.
Предположим, что J вариантов могут быть разбиты на L групп, и общий набор вариантов представляется как [1,...,J]=[(1|1,...,J1|1),..., (1|L,..., JL|L)], где j|l – j вариант в группе l, Jl – номер последнего варианта в группе l. Используется следующая логика выбора окончательного решения. Сначала выбирается одна из L групп, затем осуществляется выбор варианта в рамках группы. Этот процесс имеет древовидную структуру, которая для двух групп и 5 вариантов может выглядеть следующим образом:
Выбор
Группа1 Группа2
Пусть хj|l – вектор независимых переменных, влияющих на выбор варианта внутри группы, а zl – вектор независимых переменных, влияющих на выбор группы.
Если бы для описания процедуры выбора использовалась условная logit-модель (10.92), то предполагалось бы, что выбор варианта j и выбор группы l не зависят друг от друга.
При условии независимости выбора группы и варианта внутри группы вероятность выбора конкретного варианта определялась бы следующим выражением:
где a и g – вектора параметров.
Для гнездовой logit-модели безусловную вероятность выбора j-го варианта и l-й группы можно представить как произведение условной вероятности выбора j-го варианта при условии, что была выбрана l-я группа, и безусловной вероятности выбора l-й группы.
Заметим, что поскольку внутри группы ошибки гомоскедастичны, то условную вероятность выбора j-го варианта при условии выбора l-й группы, можно определить с использованием выражения (10.92) как
Специфика гнездовой logit-модели, ее отличие от условной logit-модели, состоит в подходе к определению вероятности выбора l-й группы. Для того чтобы раскрыть эту специфику, введем переменную Il, характеризующую “ценность” l-й группы:
В гнездовой logit-модели “ценность” l-й группы рассматривается как дополнительный фактор, влияющий на выбор этой группы, т. е. вероятность выбора l-й группы определяется следующим образом:
где tl – параметр, который и отличает гнездовуюlogit-модель от условной logit-модели. В последней он принимает значение 1. Поэтому вероятность выбора l-й группы в условной logit-модели определяется как
В гнездовойlogit-модели значение параметра tl оценивается вместе с параметрами g.
В целом, оценивание безусловной вероятности выбора j-го варианта внутри l-й группы в рамках гнездовой модели осуществляется следующим образом:
1. Вектор параметров a оценивается с использованием условной logit-модели типа (10.92), описывающей выбор j-го варианта в зависимости от факторов хj|l. После оценки параметров a по формуле (10.103) определяется ценность l-й группы, т. е. Il.
2. Вектор параметров g и параметр tl также оцениваются с использованием условной logit-модели типа (10.92), которая описывает выбор l-й группы в зависимости от факторов zl и Il.
3. По формулам (10.103), (10.105) оцениваются вероятности Pj|l и Pl. Безусловная вероятность выбора j-го варианта внутри l-й группы определяется как произведение Pj|l и Pl.
Качество оценок, получаемых на основе гнездовой logit-модели, во многом определяется правильностью построения дерева альтернативных вариантов. Отметим, что на практике достаточно трудно оценить, соответствует ли выбранная структура такого дерева исходным условиям модели, состоящих в постулировании определенных допущений относительно дисперсий ошибок (постоянство дисперсий ошибок внутри группы и различие дисперсий в разных группах).
Как это было показано ранее, модификации logit-моделей могут формироваться в зависимости от состава учитываемых в них факторов. В частности, мультиномиальнаяlogit-модель в отличие от рассмотренных выше модификаций учитывает, что на выбор индивидуума t влияют только его характеристики. Примером мультиномиальнойlogit-модели является модель выбора сферы деятельности (SchmidtandStrauss, 1975). Допустим, что имеется информация: а) относительно возможной сферы деятельности человека: (0) – “прислуга”, (1) – “синий воротничок”, (2) – “ремесленник”, (3) – “белый воротничок”, (4) – “руководитель”; б) относительно характеристик индивидуума (факторов): образование, опыт работы в данной области, пол.
Предположим, что значения зависимой переменной yt и независимых факторов wt, связаны следующим образом:
yt=aj¢×wt +etj,
где yt наблюдаемые значения зависимой переменной (т. е. 0, 1,...,J); wt – вектор факторов, содержащий характеристики индивидуума t; aj – вектор параметров, характеризующих влияние факторов wtна выбор конкретного варианта j, etj – ошибка модели.
Предположим также, что ошибки etj, j=1,...,J независимы и распределены по закону Вейбулла, т. е.
Тогда вероятность выбора t-м индивидуумом j-го варианта может быть представлена в следующем виде (см. выражения (10.89)–(10.91)):
Заметим,
что в приведенном примере
рассматривается нулевая
Из выражений (10.109) следует, что логарифм отношения вероятностей выбора j-й и 0-го варианта равен
aj¢×wt×, (10.110)
а логарифм отношения вероятностей выбора j-го и k-го вариантов –
wt¢×(aj–ak).
Информация о работе Модели с дискретными зависимыми переменными