Характеристика отработанных масел образованных в результате деятельности ООО «Татнефть–Нижнекамскнефтехим-Ойл»

Автор работы: Пользователь скрыл имя, 24 Апреля 2013 в 18:36, дипломная работа

Описание работы

Цель дипломной работы: Разработка и предложения для внедрения на заводе синтетических масел (ООО «Татнефть–Нижнекамскнефтехим-Ойл») установки по переработке отходов масел.
Для достижения цели были поставлены следующие задачи:
Дать понятие промышленных отходов и рассмотреть их классификацию.
Охарактеризовать способы утилизации, переработки и условия их захоронения.
Изучить технологию производства синтетических масел на примере ООО«Татнефть–Нижнекамскнефтехим-Ойл».
Изучить влияние производства по получения масел на окружающую природную среду – выбросы в атмосферный воздух, загрязнения водных ресурсов, образование отходов производства и потребления.

Файлы: 1 файл

текст диплома.doc

— 774.50 Кб (Скачать файл)

Адсорбционная очистка  может осуществляться контактным методом - масло перемешивается с измельченным адсорбентом, перколяционным методом - очищаемое масло пропускается через  адсорбент, методом противотока - масло и адсорбент движутся навстречу друг другу. К недостаткам контактной очистки следует отнести необходимость утилизации большого количества адсорбента, загрязняющего окружающую среду. При перколяционной очистке в качестве адсорбента чаще всего применяется силикагель, что делает этот медом дорогостоящим. Наиболее перспективным методом является адсорбентная очистка масла в движущемся слое адсорбента, при котором процесс протекает непрерывно, без остановки для периодической замены, регенерации или отфильтрования адсорбента, однако применение этого метода связано с использованием довольно сложного оборудования, что сдерживает его широкое распространение.

8. Ионно-обменная очистка

Ионно-обменная очистка  основана на способности ионитов (ионно-обменных смол) задерживать загрязнения, диссоциирующие в растворенном состоянии на ионы. Иониты представляют собой твердые гигроскопические гели, получаемые путем полимеризации и поликонденсации органических веществ и не растворяющиеся в воде и углеводородах. Процесс очистки можно осуществить контактным методом при перемешивании отработанного масла с зернами ионита размером 0,3-2,0 мм или преколяционным методом при пропускании масла через заполненную ионитом колонну. В результате ионообмена подвижные ионы в пространственной решетке ионита заменяются ионами загрязнений. Восстановление свойств ионитов осуществляется путем их промывки растворителем, сушки и активации 5%-ным раствором едкого натра. Ионно-обменная очистка позволяет удалять из масла кислотные загрязнения, но не обеспечивает задержки смолистых веществ.

9. Селективная очистка

Селективная очистка  отработанных масел основана на избирательном  растворении отдельных веществ, загрязняющих масло: кислородных, сернистых  и азотных соединений, а также при необходимости полициклических углеводородов с короткими боковыми цепями, ухудшающих вязкостно-температурные свойства масел.

В качестве селективных  растворителей применяются фурфурол, фенол и его смесь с крезолом, нитробензол, различные спирты, ацетон, метил этиловый кетон и другие жидкости. Селективная очистка может проводиться в аппаратах типа «смеситель - отстойник» в сочетании с испарителями для отгона растворителя (ступенчатая экстракция) или в двух колоннах экстракционной для удаления из масла загрязнений и ректификационной для отгона растворителя (непрерывная экстракция). Второй способ экономичнее и получил более широкое применение.

Разновидностью селективной  очистки является обработка отработанного  масла пропаном, при которой углеводороды масла растворяются в пропане, а асфальтосмолистые вещества, находящиеся в масле в коллоидном состоянии, выпадают в осадок.

10. Химические методы

Химические методы очистки  основаны на взаимодействии веществ, загрязняющих отработанные масла, и вводимых в  эти масла реагентов. При этом в результате химических реакций образуются соединения, легко удаляемые из масла. К химическим методам очистки относятся кислотная и щелочная очистки, окисление кислородом, гидрогенизация, а также осушка и очистка от загрязнений с помощью окислов, карбидов и гидридов металлов. Наиболее часто используются:

11. Сернокислотная очистка

По числу установок  и объему перерабатываемого сырья  на первом месте в мире находятся  процессы с применением серной кислоты. В результате сернокислотной очистки образуется большое количество кислого гудрона - трудно утилизируемого и экологически опасного отхода. Кроме того, сернокислотная очистка не обеспечивает удаление из отработанных масел полициклических аренов и высокотоксичных соединений хлора.

12. Гидроочистка

Гидрогенизационные процессы все  шире применяются при переработке  отработанных масел. Это связано  как с широкими возможностями  получения высококачественных масел, увеличения их выхода, так и с  большой экологической чистотой этого процесса по сравнению с сернокислотной и адсорбционной очистками.

Недостатки процесса гидроочистки - потребность в больших количествах  водорода, а порог экономически целесообразной производительности (по зарубежным данным) составляет 30-50 тыс. т/год. Установка  с использованием гидроочистки масел, как правило, блокируется с соответствующим нефтеперерабатывающим производством, имеющим излишек водорода и возможность его рециркуляции.

13. Процессы с применением натрия  и его соединений

Для очистки отработанных масел  от полициклических соединений (смолы), высокотоксичных соединений хлора, продуктов окисления и присадок применяются процессы с использованием металлического натрия. При этом образуются полимеры и соли натрия с высокой температурой кипения, что позволяет отогнать масло. Выход очищенного масла превышает 80%. Процесс не требует давления и катализаторов, не связан с выделением хлоро- и сероводорода. Несколько таких установок работают во Франции и Германии. Среди промышленных процессов с использованием суспензии металлического натрия в нефтяном масле наиболее широко известен процесс Recyclon (Швейцария). Процесс Lubrex с использованием гидроксида и бикарбоната натрия (Швейцария) позволяет перерабатывать любые отработанные масла с выходом целевого продукта до 95%.[17]

Считается, что при большом годовом объеме потребления предприятием отработанных масел капитальные вложения на очистку и регенерацию на месте потребления полностью себя окупают. Это относится и к крупным системам смазки с объемом резервуара более 0,75 м . Проведение очистки и регенерации, однако, не всегда возможно для мелких потребителей смазочных материалов. Для небольших стран наиболее выгодна централизованная регенерация.

Следует иметь в виду, что для отдельных типов смазочных материалов величины ресурсов сбора отработанных синтетических масел (ОСМ) сильно

различаются. Так, для моторных масел  они могут составлять 20-40%, а для  трансформаторных - 80 - 90%.

В большинстве стран наиболее целесообразным признан сбор отработанных нефтяных масел раздельно по маркам, что обеспечивает более квалифицированную регенерацию и переработку с получением продуктов высокого качества и с меньшим количеством отходов. С другой стороны, согласно требованиям ЕС и законодательством многих европейских стран, отработанными маслами считают жидкие или полужидкие продукты, полностью или частично состоящие из нефтяных или синтетических масел, маслосодержащие остатки из резервуаров; эмульсии и смеси воды и масла с содержанием последнего не менее 4%, масла, пролитые (в результате переливов, аварий и т.п.) или с превышенным сроком хранения. Соблюдение понятий жидкий или полужидкий предполагает отсутствие сырой нефти, мазута и пластичных смазок. Понятия полностью и частично регламентируют содержания компонентов в смеси (нефтяных и синтетических) от 100% до менее 20 млн-1, теоретически - до 1 млн-1. Из синтетических масел в собираемых смесях допустимо присутствие только углеводородов (в основном это полиальфаоефины - ПАО), простых и сложных эфиров, не осложняющих вторичную переработку. Несовместимые с нефтяными маслами полиалкилгликоли (ПАГ) собирают отдельно.

Такой подход к решению проблемы предполагает использование гибких технологий, позволяющих перерабатывать подобные смеси.

Мировой сбор ОМ составляет около 15 млн. т/год (менее 50% производства свежих), при этом подавляющее количество (70-90%) используется в качестве топлива. До сих пор в большинстве стран отсутствует централизованный сбор и утилизация в государственных масштабах, поэтому статические данные весьма противоречивы.

В Европе перечисленные показатели значительно выше - сбор Ом около 57%о (1,6 млн т/год), использование в качестве топлива - 60%).[16]

 

1.2.3 Влияние качества масла на способы его переработки

 

Утилизацию ОМ в настоящее  время осуществляют в основном по трем направлениям:

- вторичная переработка смесей с незначительными примесями 
синтетических масел и смазочно-охлаждающие технологические средства 
(СОТС), с получением базовых компонентов;

-регенерация ОМ раздельно  по маркам с получением продуктов  соответствующего назначения. В этом случае обеспечивается удаление продуктов старения и загрязнений без разрушения и отделения присадок, недостающее количество которых вводят на заключительной стадии приготовления товарных масел;

- переработка смесей ОМ или очистка отдельных продуктов с целью 
получения котельного, печного топлива.[18]

В Средневолжском НИИ НИ разработан способ регенерации огнестойкого турбинного масла на основе триксиленилфосфата. В опытно-промышленных условиях процесс проводили по схеме: перегонка - водно-щелочная и водная отмывка - сушка - доочистка сорбентом - фильтрование. Получаемый продукт соответствует нормам на свежее масло и, кроме того, может быть использован в качестве противоизносной присадки к смазочным материалам.

Технология фирмы Dalton (Великобритания) предназначена, в частности, для регенерации отработанных огнестойких авиационных масел (в том числе гидравлических жидкостей специального назначения для самолетов «Конкорд»). Услугами фирмы Dalton в области регенерации синтетических масел пользуются основные авиакомпании Великобритании и ряда других стран. Отработанные авиационные масла составляют ~30% общего объема переработки, осуществляемого фирмой.

Осушку и дегазацию  работающих масел на основе сложных  эфиров фосфорной кислоты можно  проводить на установке фирмы Pall (Германия), принцип действия которой заключается в тонком фильтровании и вакуумной сепарации. Содержание воды в таких маслах можно снизить с 1500до 23млн-1. Процесс Rotovac пригоден для регенерации синтетических масел на основе ПАО и сложных эфиров. Уникальным следует считать процесс ENTRA, позволяющий перерабатывать отработанные нефтяные масла на базе синтетических сложных эфиров и растительных продуктов.

Весьма важной является проблема переработки смесей отработанных синтетических и нефтяных масел. Такие смеси образуются либо из-за отсутствия элементарной культуры эксплуатации масел и сбора отработанных продуктов, либо из-за невозможности организации отдельного сбора. Подобные трудности возникают и при регенерации отработанных масел на смешанной основе (так называемых полусинтетических). Смеси отработанных масел для компрессоров холодильных машин (нефтяные компоненты и сложные эфиры пентаэритрита) предложено очищать по схеме, включающей стадии удаления основной части хладагентов, контактной очистки асканитом, фильтрования и осушки цеолитом. Очищенная смесь пригодна для повторного использования по прямому назначению.

Основная информация по очистке  и регенерации отработанных синтетических  масел содержится в патентах. Масла  на основе силиконов находят широкое применение, их используют, в частности, в качестве охлаждающих или изоляционных средств в электроустановках высокого напряжения. Для осушки и дегазации таких масел можно использовать последовательную очистку цеолитом (силикагелем, оксидом алюминия), а затем активированным углем или активированным природным сорбентом с последующим отделением и фильтрацией. Такая очистка исключает удаление из масла присадок. Затем проводят дегазацию в вакууме при 50-110°С.

Предлагается очистка  и осушка отработанного силиконового масла при 20-80 °С с помощью инертного газа, получаемого испарением жидкого азота. Очищенное масло дегазируют при нагреве в вакууме. Конечный продукт содержит менее 1 млн-1 воды. В ряде патентов предлагаются разнообразные способы регенерации отработанных синтетических масел. Так, регенерацию метилфенилсиликоновых масел осуществляют деполимеризацией сырья при 250-280°С, остаточном давлении 17,3-21,3 КПа в атмосфере азота в присутствии 0,24-04% пиридина и такого же количества воды. Продукт деструкции полимерных молекул подвергают полимеризации в присутствии серной кислоты. Выход конечного продукта регенерации вязкостью 100 мм 2/с при 25°С составляет 84%.

Регенерацию масел на основе полиалкиленгликолей, легко абсорбирующих влагу при эксплуатации, предложено проводить с помощью цеолитов с частицами диаметром 0,1-10 мм. Процесс можно осуществлять в контейнере, на дно которого помещается цеолит в сетчатой упаковке; для повышения эффективности обезвоживания масло в контейнере подвергают воздействию ультразвука.

Отработанные сложноэфирные масла  предложено регенерировать с помощью 3-10%-ого водного раствора серной кислоты, взятого в количестве 20-50%о маc. на исходное масло. Процесс ведут при 20-80°С с последующей промывкой водой и осушкой. По другому методу отработанное сложноэфирное масло обрабатывают при 45-55°С 10-20%>-ным водным раствором гидроксида натрия в количестве 20-30%) маc. на сырье. Последующими стадиями регенерации являются выделение масляного слоя, его водная промывка, сушка и фильтрация. Процесс позволяет кроме загрязнений и продуктов старения удалить из масла присадки и продукты их окисления. При этом не происходит термической и гидролитической деструкции сложного эфира.

Для очистки смазочных  материалов на основе фторхлоруглеродных соединений, попадающих при эксплуатации примесей предложен фильтрационный метод, предполагающий применение различных сорбентов - активного оксида алюминия, глинозема, боксита, силикагеля, глин и др. Предусмотрен четкий контроль качества получаемого продукта. Отработанное фреоновое масло подвергают грубой очистке от посторонних загрязнителей. Затем масло разбавляют петролейным эфиром 10:2 и после перемешивания смесь разделяют. Из выделенного масла удаляют оставшиеся компоненты петролейного эфира.

Информация о работе Характеристика отработанных масел образованных в результате деятельности ООО «Татнефть–Нижнекамскнефтехим-Ойл»