Теоретические основы формирования вычислительных навыков у детей младшего школьного возраста с нарушениями интеллекта

Автор работы: Пользователь скрыл имя, 23 Марта 2014 в 07:34, курсовая работа

Описание работы

Добиться овладения учащимися с нарушением интеллекта доступных математических знаний, умений и навыков, необходимых в повседневной жизни и в будущей профессии, так прочно, чтобы они стали достоянием учащихся на всю жизнь-главная задача обучения математике. В специальных исследованиях В.А. Крутецкого показано, что для творческого овладения математикой как учебным предметом необходима способность к формализованному восприятию математического материала (схватыванию формальной структуры задачи), способность к быстрому и широкому обобщению математических объектов, отношений, действий, способность мыслить свернутыми структурами (свертывание процесса математического рассуждения), гибкость мыслительных процессов, способность к быстрой перестройке направленности мыслительного процесса, математическая память (обобщенная память на математические отношения, методы решения задач, принципы подхода к ним).

Содержание работы

Введение
Глава 1. Теоретические основы формирования вычислительных навыков в пределах первого десятка у детей младшего школьного возраста с нарушениями интеллекта
1.1 Значение формирования математических представлений у детей
1.2 Психолого-педагогическая характеристика детей с нарушением интеллекта и особенности усвоения ими математических знаний
Глава 2. Изучение сформированности вычислительных навыков в пределах первого десятка у детей младшего школьного возраста с нарушениями интеллекта
2.1 Организация и методика проведения констатирующего эксперимента
2.2 Анализ результатов констатирующего эксперимента
2.3 Система задач и упражнений на формирование вычислительных навыков в пределах первого десятка у детей младшего школьного возраста с нарушениями интеллекта
Заключение
Список литературы
Приложение

Файлы: 1 файл

математика курсовая печать.doc

— 218.00 Кб (Скачать файл)

Так, на уроках математики в 7-м классе учащиеся получают знания о симметричных фигурах, об оси симметрии. А подготовительная работа к усвоению этих знаний ведется уже на уроках рисования в 3-4-х классах при изображении плоских предметов симметричной формы с применением осевой линии: молотка, доски для резания овощей, детской лопатки, теннисной ракетки (3-й класс), вымпела с изображением ракеты, бабочки (4-й класс). Используя эти умения учащихся и их наблюдения симметричных фигур, а также умение их изображать, легко можно дать знания об оси симметрии и симметричных предметах.

На уроках географии при изучении отдельных тем, например «Масштаб», «План», учитель широко может использовать знания черчения, математики (при определении периметра, площади, использовании единиц измерения и их соотношений).

На уроках истории учитель расширяет и уточняет временные представления учащихся, а также использует их умения в решении задач на время для вычисления продолжительности и удаленности исторических событий. Последние приобретают большую конкретность для учащихся, лучше соотносятся с определенным временем.

На уроках физкультуры учащиеся закрепляют знания о величинах (длине, массе). Величина находит здесь свое конкретное выражение особенно тогда, когда нужно пройти на лыжах, пробежать, проплыть то или иное расстояние, прыгнуть, преодолев определенную высоту или длину. Уроки физкультуры позволяют практически ощутить, осознать взаимозависимость между временем, расстоянием и скоростью, о которых они узнают на уроках математики.

Своеобразна связь обучения математике с русским языком. На уроках математики учитель решает задачу развития математической речи учащихся, обогащения ее математическим словарем (математическими терминами, выражениями). Опыт и наблюдения показывают, что точность, лаконичность математической речи положительно влияют на усвоение математических знаний, а умение описать (рассказать) ход решения задачи, числового выражения способствует сознательному выполнению действий. Учитель математики следит не только за правильностью решения задач и примеров, но и за грамотностью письма, правильным стилем при построении предложений.

На уроках русского языка необходимо закреплять написание числительных и других математических терминов и выражений.

Учитель математики следит на правильностью произношения звуков учащимися. Он должен поддерживать контакт с логопедами, учитывать работу логопеда, направленную на коррекцию дефектов речи, произношения, работать над автоматизацией поставленных звуков. В противном случае ученик будет считать, что следить за своей речью, за правильным произношением звуков и слов надо только на логопедических занятиях, а на других учебных предметах это делать необязательно.

Коррекционная школа VIII вида решает задачу взаимосвязи обучения и подготовки учащихся к труду таким образом, чтобы эти два процесса шли не параллельно, а были тесно связаны и обогащали друг друга.

Педагогические и психологические исследования показывают, что умственно отсталые школьники, даже обладая знаниями, не могут ими воспользоваться при решении трудовых задач, у них не возникает ассоциаций между определенными математическими знаниями, закономерностями и теми жизненными явлениями, с которыми они сталкиваются в процессе выполнения трудовых операций. Следовательно, задача и учителя математики и учителя труда - создавать такие ситуации, в которых бы эти ассоциативные связи возникали. Процесс обучения математике следует строить так, чтобы знания, полученные на уроках труда, а также трудовой опыт учащихся использовались на уроках математики, повышали интерес учащихся к изучению этого предмета, показывали жизненную необходимость математических знаний.

Практические умения: измерительные, графические, конструктивные, вычислительные, предусмотрены программой по математике и находят самое широкое применение в любом виде труда, в любой профессии. Однако эти знания ученик сможет применить на уроках труда лишь в том случае, если и учитель математики, и учитель труда научат учащихся применять эти знания и будут включать их в жизненно-практические задачи.

Необходимо, чтобы учитель математики хорошо знал, какими профессиями овладевают учащиеся данного класса, в каких видах труда они участвуют, с какими орудиями труда, материалами они имеют дело, какими измерительными и чертежными инструментами пользуются, какие изделия изготовляют. Учителя математики должны знать, какие модели, таблицы, диафильмы, кинофильмы использует учитель профессионального труда и какие математические знания для их осмысления, понимания потребуются учащимся.

Изучив все это, т.е. очень подробно ознакомившись с программами по тем видам профессионального труда, которыми овладевают учащиеся класса, и с практическими работами в мастерских, учитель математики намечает, какие темы курса математики наиболее тесно связаны с трудом, как сделать, чтобы знания, полученные при изучении математики, подготовили учащихся к овладению трудовым процессом, сделали их труд более осмысленным.

Например, известно, что на уроках математики учащиеся знакомятся со всеми мерами длины. На уроках труда учитель по трудовому обучению должен показать учащимся практическое использование этих мер, ставить задачи, требующие выражения заданной величины в различных единицах измерения, требовать точности измерений, вырабатывать у учащихся навыки пользования измерительными инструментами.

В свою очередь учитель математики может использовать знания и опыт учащихся, полученные на уроках труда. Например, учитель спрашивает: «Какое изделие изготовляли на уроках труда? Из какого материала оно выполнено? Какова толщина листового металла? С помощью какого инструмента определяли толщину металла? Какую меру длины надо выбрать для определения толщины металла? В каких мерах производят измерения, когда снимают мерку для шитья юбки, блузки в швейной мастерской? В каких мерах производят измерения, когда делают совок в мастерской?» [16].

На уроках слесарного дела учащиеся производят разметку и обработку деталей прямоугольной формы по заданным размерам. Учитель математики должен подготовить к этому учащихся теоретически: повторить с ними свойства квадрата и прямоугольника, правила измерения, единицы измерения длины и их соотношения. На уроках труда учитель трудового обучения учит школьников использовать полученные знания в новой ситуации, знакомит с новыми инструментами для разметки (чертилка, кернер, разметочный циркуль и др.), показывает, чем ученическая линейка отличается от складного метра.

На уроках слесарного дела учащиеся изготовляют предметы цилиндрической формы: детское ведро, лейку, масленку для жидкого масла. В этом случае они должны широко использовать свои знания о свойствах цилиндра, умения сделать развертку цилиндра, вычислить длину окружности основания. В свою очередь на уроках математики учитель требует от учащихся самостоятельно снять размеры с изготовленного на уроке труда изделия и определить расход материала на его изготовление с учетом припуска на фальц (швы). Можно предложить и такое задание: сделать расчет размеров и разметку изделия цилиндрической формы (ведро, лейка, картонный стакан) по заданному диаметру и высоте.

Вместо выражения «единицы измерения» в коррекционной школе следует употреблять слово «меры», так как учащиеся смешивают понятия: единицы - первый разряд в десятичной системе счисления, единица - первое число в последовательности числового ряда и единицы измерения.

В свою очередь преподаватели труда должны хорошо знать программу и учебники по математике и стараться использовать, закреплять и углублять математические знания, умения и навыки [6, 7, 12, 13, 15, 17].

Однако для связи обучения математики с трудом недостаточно только изучения программы, необходимо взаимопосещение уроков, совместное их обсуждение, рассмотрение вопросов взаимосвязи обучения математике с профессионально-трудовым обучением на совместных методических объединениях учителей труда и математики.

Таким образом, математика является одним из самых трудных предметов для детей с нарушением интеллекта. Это объясняется абстрактностью математических понятий и особенностями усвоения математических знаний, умений и навыков учащимися. Успех в сформированности математических знаний, умений и навыков школьников с нарушением интеллекта зависит от учета трудностей и особенностей овладения ими математическими знаниями, от учета потенциальных возможностей учащихся. 

 

1.2 Психолого-педагогическая  характеристика детей с нарушением  интеллекта и особенности усвоения  ими математических знаний.

Овладение даже элементарными математическими понятиями требует от ребенка достаточно высокого уровня развития таких процессов логического мышления, как анализ, синтез, обобщение, сравнение.

Исследования В.А. Крутецкого (1968) показали, что для творческого овладения математикой как учебным предметом необходима способность к формализованному восприятию математического материала (схватыванию формальной структуры задачи), способность к быстрому и широкому обобщению математических объектов, отношений, действий, способность мыслить свернутыми структурами (свертывание процесса математического рассуждения), гибкость мыслительных процессов, способность к быстрой перестройке направленности мыслительного процесса, математическая память (обобщенная память на математические отношения, методы решения задач, принципы подхода к ним) [5].

Именно эти способности, необходимые для успешного овладения математическими знаниями, у учащихся школы VIII вида развиты чрезвычайно слабо. Известно, что математика является одним из самых трудных предметов для этой категории учащихся. С одной стороны, это объясняется абстрактностью математических понятий, с другой стороны, особенностями усвоения математических знаний учащимися.

Успех в обучении математике школьников с нарушением интеллекта во многом зависит, с одной стороны, от учета трудностей и особенностей овладения ими математическими знаниями, а с другой - от учета потенциальных возможностей учащихся. Состав учащихся школы VIII вида чрезвычайно разнороден, поэтому трудности и потенциальные возможности каждого ученика своеобразны. Однако можно усмотреть и некоторые общие особенности усвоения математических знаний, умений и навыков, которые являются характерными для всех учащихся с интеллектуальным недоразвитием. [6]

Здесь будут раскрыты только общие трудности усвоения математики, которые объясняются особенностями психофизического развития учащихся коррекционной школы. Трудности и особенности усвоения различных разделов математики (овладение нумерацией, арифметическими действиями, решением задач, геометрическими понятиями) будут раскрыты в соответствующих главах при изложении частных вопросов методики математики.

Наблюдения и специальные исследования показывают, что узость, не целенаправленность и слабая активность восприятия создают определенные трудности в понимании задачи, математического задания. Учащиеся воспринимают задачу не полностью, а фрагментарно (по частям), а несовершенство анализа и синтеза не позволяет эти части связать в единое целое, установить между ними связи и зависимости и, исходя из этого, выбрать правильный путь решения. [16]

Воспринимая задачу фрагментарно, ученик и решает ее на основе воспринятого фрагмента. Фрагментарность восприятия является одной из причин ошибочного вычисления значения числовых выражений, содержащих два действия вида.

Слабая активность восприятия приводит к тому, что учащиеся не узнают знакомые геометрические фигуры, если они даются в непривычном положении или их нужно выделить в предметах, найти в окружающей обстановке. Они не могут найти в задаче числовые данные, если они записаны не цифрами, а словами, выделить вопрос, если он стоит не в конце, а в начале или в середине задачи. [11]

Трудности при обучении математике вызываются также несовершенством зрительных восприятий (зрительного анализа и синтеза) и моторики учащихся. Это проявляется в обучении письму вообще и цифр в частности. У школьников с нарушением интеллекта младших классов нередко наблюдается зеркальное письмо цифр.

Учащиеся часто путают цифры 3, 6 и 9, 2 и 5,7 и 8 и при чтении, и при письме под диктовку. Причиной слабого различения цифр 7 и 8 является, очевидно, и несовершенство слуховых восприятий: учащиеся не различают на слух слова семь - восемь. Учащиеся нередко строят цифры, а не пишут: например, при написании цифры 1 сначала пишут вертикальную палочку, а потом к ней пристраивают крючочек справа, пишут цифру снизу вверх (не запоминают, с какого элемента надо начинать написание цифры). [16]

Затрудненность письма у некоторых учащихся усугубляется тремором (дрожанием) рук, параличами. Нарушение координации движений у отдельных учащихся нередко служит причиной очень сильного нажима при письме, который приводит к поломке карандаша и прорыву бумаги.

Несовершенство зрительных восприятий, трудности пространственной ориентировки приводят к тому, что учащиеся не видят строки и не понимают ее значения. Поэтому ученик может начать писать строчку цифр в левом верхнем углу тетради, а закончить ее в правом нижнем углу, то есть располагает цифры по диагонали, также располагает и строчки примеров, не соблюдает высоту цифр, интервалов.

Письмо цифр, примеров из года в год совершенствуется, так как в процессе обучения корригируется моторика, зрительные восприятия. Однако и в старших классах еще наблюдаются случаи размашистого, неустойчивого почерка. Эта особенность некоторых умственно отсталых школьников затрудняет производить вычисления в столбик, так как такие ученики не соблюдают по разрядность в записи примеров, а отсюда ошибки в вычислениях. [19]

Несовершенство моторики школьников с нарушением интеллекта (двигательная недостаточность, скованность движений или, наоборот, импульсивность, расторможенность) создает значительные трудности в пересчете предметов: ученик называет один предмет, а берет или отодвигает сразу несколько предметов, то есть называние чисел опережает показ или, наоборот, показ опережает называние чисел.

Информация о работе Теоретические основы формирования вычислительных навыков у детей младшего школьного возраста с нарушениями интеллекта