Теоретические основы формирования вычислительных навыков у детей младшего школьного возраста с нарушениями интеллекта

Автор работы: Пользователь скрыл имя, 23 Марта 2014 в 07:34, курсовая работа

Описание работы

Добиться овладения учащимися с нарушением интеллекта доступных математических знаний, умений и навыков, необходимых в повседневной жизни и в будущей профессии, так прочно, чтобы они стали достоянием учащихся на всю жизнь-главная задача обучения математике. В специальных исследованиях В.А. Крутецкого показано, что для творческого овладения математикой как учебным предметом необходима способность к формализованному восприятию математического материала (схватыванию формальной структуры задачи), способность к быстрому и широкому обобщению математических объектов, отношений, действий, способность мыслить свернутыми структурами (свертывание процесса математического рассуждения), гибкость мыслительных процессов, способность к быстрой перестройке направленности мыслительного процесса, математическая память (обобщенная память на математические отношения, методы решения задач, принципы подхода к ним).

Содержание работы

Введение
Глава 1. Теоретические основы формирования вычислительных навыков в пределах первого десятка у детей младшего школьного возраста с нарушениями интеллекта
1.1 Значение формирования математических представлений у детей
1.2 Психолого-педагогическая характеристика детей с нарушением интеллекта и особенности усвоения ими математических знаний
Глава 2. Изучение сформированности вычислительных навыков в пределах первого десятка у детей младшего школьного возраста с нарушениями интеллекта
2.1 Организация и методика проведения констатирующего эксперимента
2.2 Анализ результатов констатирующего эксперимента
2.3 Система задач и упражнений на формирование вычислительных навыков в пределах первого десятка у детей младшего школьного возраста с нарушениями интеллекта
Заключение
Список литературы
Приложение

Файлы: 1 файл

математика курсовая печать.doc

— 218.00 Кб (Скачать файл)

Известно, что у умственно отсталых школьников с большим трудом вырабатываются новые условные связи, особенно сложные, но, возникнув, они оказываются непрочными, хрупкими, а главное, недифференцированными. Слабость дифференциации нередко приводит к уподоблению знаний. Учащиеся быстро утрачивают те существенные признаки, которые отличают одну фигуру от другой, один вид задачи от другого, те признаки, которые позволяют различать числа, действия, правила. Уподобление наблюдается и у учащихся массовой школы, но это происходит реже, когда знания забываются, сглаживаются или плохо усвоены по той или иной причине. У умственно отсталых школьников наблюдается грубое уподобление. Уподобляются задачи, в которых есть хоть какое-то внешнее сходство (простые задачи уподобляются сложным, и наоборот). [18]

Причины уподобления знаний неоднородны. Одна из причин, как указывает Ж. И. Шиф, состоит в том, что приобретенные знания сохраняются неполно, неточно, объединение знаний в системы происходит с трудом, системы этих знаний недостаточно расчленены.

Другая причина слабой дифференцированности математических знаний кроется в отрыве математической терминологии от конкретных представлений, реальных образов, объектов, в непонимании конкретной ситуации задачи, математических зависимостей и отношений между данными, а также между данными и искомыми. Например, учащиеся не представляют себе реально таких единиц измерения, как километр и килограмм, а некоторое сходство в их звучании приводит к их уподоблению.

Трудности в обучении математике учащихся школы VIII вида обусловливаются косностью и тугоподвижностью процессов мышления, связанных с инертностью нервных процессов. Проявление этих процессов мышления умственно отсталых при обучении математике многообразно. [4]

Отмечается «застревание» на принятом способе решения примеров, задач, практических действий. С трудом происходит переключение с одной умственной операции на другую, качественно иную. Например, учащиеся, научившись складывать и вычитать приемом пересчитывания, с большим трудом овладевают приемами присчитывания и отсчитывания.

При вычислении значения числовых выражений, содержащих два разных действия, например сложение и вычитание, ученик, выполнив одно действие, не может переключиться на выполнение другого действия. [3]

Учащиеся школы VIII вида нередко записывают ответ первого примера в ответы всех последующих примеров, то есть наблюдается явление персеверации. Недостатки мышления проявляются также в стереотипности ответов.

Косность мышления проявляется в «приспосабливании» заданий к своим знаниям и возможностям. [7]

Эта особенность проявляется и при воспроизведении задач. Задачу на нахождение неизвестного компонента ученик воспроизводит как задачу на нахождение результата, т.е. более привычную.

Тугоподвижность мышления умственно отсталых проявляется в «буквальном переносе» имеющихся знаний без учета ситуации, без изменений этих знаний в соответствии с новыми условиями. Преобразования и действия с числами, выраженными в мерах времени, они выполняют так же, как с числами, выраженными в метрической системе мер. Причина таких ошибок не только в незнании соотношения мер, но и в особенностях мышления учащихся: они редко подвергают задания предварительному анализу, с трудом актуализируют адекватные заданию знания.

«Буквальный перенос» наблюдается и при решении задач. Особенно часто это проявляется при переходе от решения простых задач к составным (во 2-3-х классах составная задача в два действия решается одним действием). В 4-5-х классах, когда большинство задач решается в 2-3 действия, учащиеся, наоборот, простые задачи решают двумя и даже тремя действиями, привнося лишние действия.

Несовершенство анализа приводит к тому, что умственно отсталые школьники сравнение задач, геометрических фигур, примеров, математических выражений проводят поверхностно, не проникая во внутренние связи и отношения. Например, если даны две задачи одного вида, но с различными ситуациями, умственно отсталые учащиеся не устанавливают их сходства. Ученик руководствуется при сравнении лишь внешними признаками, не проникая в математическую сущность задачи, не вскрывая отношений между числовыми данными.

Умственно отсталые учащиеся исходят при решении задач или выполнении заданий из несущественных признаков, руководствуются отдельными словами и выражениями или пользуются усвоенными ранее схемами-шаблонами. Это приводит к тому, что, не умея отойти от этих штампов, ученик нередко дополняет условие задачи, чтобы подвести ее под определенную, известную ему схему. Он вводит слова всего, осталось, стало, вместе и на их основе выбирает действия.

А вот пример сравнения геометрических фигур. «В чем различие квадрата и прямоугольника?» - спрашивает учитель. «Они не похожи сторонами». - «В чем их сходство?» - «У них углы, стороны» (4-й класс). Нередко при сравнении наблюдается «соскальзывание» на несоотносимые элементы. «Эта лента длинная, а эта красная».

При сравнении задач, числовых выражений, геометрических фигур дефекты мышления проявляются в трудностях перехода от выявления сходства к установлению на этой основе общности и от выявления различия к установлению своеобразия в геометрических фигурах: круге, квадрате, треугольнике и прямоугольнике. Ученики 1-го класса коррекционной школы не видят сходства.

У умственно отсталых школьников снижена способность к обобщению. Это проявляется в трудностях формирования математических понятий, усвоения законов и правил. С трудом формируются понятия числа, счета, усваиваются закономерности десятичной системы счисления. Например, ученик 1-го класса коррекционной школы, умея пересчитывать палочки, нередко отказывается от пересчета шишек или других предметов, которые раньше не употреблялись как объекты счета. Затрудняет учащихся счет непривычно расположенных предметов (вертикально, вразброс, рядами). Это свидетельствует о том, что ребенок заучил названия числительных по порядку, однако понятия и навыки счета у него не сформированы.

Слабость обобщений проявляется в механическом заучивании правил, без понимания их смысла, без осознания того, когда их можно применить. Например, ученик знает переместительное свойство сложения, но при решении примеров его не использует.

Низкий уровень мыслительной деятельности школьников с нарушением интеллекта затрудняет переход от практических действий к умственным. В отличие от нормально развивающихся детей и детей с задержкой психического развития, для формирования у умственно отсталых учащихся представлений о числе, счете, арифметических действиях и др. требуется развернутость всех этапов формирования умственных действий.

Недостатки гибкости мышления проявляются в подборе примеров к правилам, при составлении задач: учащиеся нередко составляют задачи с одинаковой фабулой, повторяющимися глаголами, числовыми данными, вопросами.

Школьники с нарушением интеллекта в силу неумения мыслить обратимо с большим трудом связывают взаимообратные понятия и, усвоив одно из них, могут не иметь представления о другом, обратном (много - мало, вверху - внизу и т.д.), не связывают их в пары, воспринимают обособленно, затрудняются в сравнении чисел, установлении отношений эквивалентности и порядка при изучении отрезков натурального ряда чисел.

У учащихся школы VIII вида имеют место недостатки и своеобразие общего речевого развития. В олигофренопсихологии отмечаются недостаточность и своеобразие их собственной речи, трудности в понимании обращенной к ним речи.

Непонимание значения слов и выражений создают значительные трудности в обучении математике, особенно в обучении решению задач. Нередко учащиеся не решают задачу потому, что не понимают значения слов, выражений, предметной ситуации задачи, а также той математической «нагрузки», которую несут такие слова, как другой, второй, оба, каждый, столько же.

Бедность словаря проявляется и при составлении задач: учащиеся оперируют словами-штампами, не могут избежать слов-штампов в формулировке вопросов, заменяя специфические слова в вопросах общим словом сколько.

Из-за слабости регулирующей функции речи ученику коррекционной школы трудно полностью подчинить свое действие словесному заданию. Например, задание посчитать до заданного числа или от заданного до заданного числа, несмотря на его правильное восприятие, нередко выполняется стереотипно - ученик считает от 1 до 10 и обратно от 10 до 1.

Учащиеся школы VIII вида испытывают затруднения в использовании имеющихся знаний в новой ситуации, а также в практической деятельности. Причиной этого являются трудности переноса знаний без критического отношения к ним, без учета ситуации, трудности актуализации имеющихся знаний, а также, по выражению Ж. И. Шиф (1965), отсутствие «гибкости ума», трудности обобщений при решении новых задач умственно отсталыми школьниками.

Трудности в обучении математике учащихся школы VIII вида усугубляются слабостью регулирующей функции мышления этих детей. «Бездумным» подходом к выполнению любого задания объясняется и редкое использование рациональных приемов вычислений: округления, группировки. Многие трудности в обучении математике и многие ошибки в вычислениях при решении задач и при выполнении других заданий снимаются, если учащиеся умеют контролировать свою деятельность. Учащимся школы VIII вида свойственны некритичность в выполнении действий, слабость самоконтроля. Причиной этого является некритичность мышления умственно отсталых школьников. Они редко сомневаются в правильности своих действий, не проверяют ответов, не замечают даже абсурдных ошибок, например, таких, когда частное больше делимого или произведение меньше множимого. Требуется целая система наводящих вопросов, чтобы ученик почувствовал и осознал абсурдность ответов.

Некритичность мышления проявляется и при решении задач. Учащихся не смущает, что ответ часто не соответствует ни условию, ни вопросу задачи.

Некоторые учащиеся бывают не уверены в своих действиях, они часто обращаются к учителю за поддержкой, не пишут ответ пока не получат одобрения со стороны учителя. Без всякого критического обсуждения они могут тут же изменить ответ, решение задачи, не вдумываясь в то, что делают и нужно ли это. «А что тут нужно отнять, умножить?» - спрашивает ученик и тут же исправляет действие.

У умственно отсталых учащихся, проучившихся некоторое время в массовой школе, наблюдается нередко отрицательное отношение к учению вообще и к математике в частности, как наиболее трудному учебному предмету. Объясняется это тем, что темп работы, содержание учебного материала были непосильны учащимся, а методы и приемы работы учителя не учитывали особенностей дефектов этих детей.

Таким образом, для успешного обучения учащихся школы VIII вида математике учитель должен хорошо изучить состав учащихся, знать причины умственной отсталости каждого ученика, особенности его поведения, определить его потенциальные возможности, с тем, чтобы наметить пути включения его во фронтальную работу класса с учетом его психофизических особенностей, степени дефекта. Это даст возможность правильно осуществить дифференцированный и индивидуальный подход к учащимся, наметить пути коррекционной работы.

 

 

 

 

 

 

 

 

 

 

 

 

Глава 2. Изучение сформированности вычислительных навыков в пределах первого десятка у детей младшего школьного возраста с нарушениями интеллекта.

2.1 Организация и методика педагогического исследования.

На основе изученной методической литературы было проведено практическое исследование на формирование вычислительных навыков в пределах первого десятка специальной (коррекционной) школы. Для проведения данной экспериментальной работы были использованы следующие методы:

Эмпирические методы – методы, которые обеспечивают возможность непосредственного познания учебно-воспитательной деятельности, что обогащает эмпирическую основу педагогики и создает базу для дальнейшего теоретического познания.

В ходе исследования нами был использован метод наблюдения, который проводился путем одновременного выполнения функций исследователя.

Наблюдение как научный метод – это целенаправленное, планомерное и систематическое восприятие воспитательных явлений и процессов. Наблюдение определяется какой-либо идеей и направленно  к ясно сформулированной цели. Определенность цели означает, что научный работник точно знает, что ему следует наблюдать и может предвидеть результаты своего наблюдения.

Целью нашего констатирующего эксперимента явилось:

- выявить уровень сформированности вычислительных навыков в пределах первого десятка.

Предметом наблюдения является деятельность учащихся на уроках математики.

Эксперимент проводился на базе МБОУ СОШ №63, в 1 специальном (коррекционном)  классе V вида с детьми: (см.приложение 1)

В процессе обучения  школьники овладевают знаниями состава числа в пределах десяти. Это необходимо для применения полученных знаний на практике (при решении примеров и текстовых задач, на уроках трудового обучения, в практической деятельности и т.д.).

Числа первого десятка и действия с ними изучаются в течение первого года обучения. Учащиеся знакомятся с каждым числом первого десятка в отдельности. Изучается образование каждого числа, обозначение его цифрой, счет в пределах этого числа, соотношение предметной совокупности, числа и цифры, определяется место числа в натуральном ряду чисел. Числа сравниваются, изучаются их состав, действия сложения и вычитания в пределах каждого числа, отрезок числового ряда, решаются простые арифметические задачи на нахождение суммы и остатка.

Сформировать представления числа, счета и дать некоторые первоначальные свойства натурального ряда чисел у умственно отсталых первоклассников - задача чрезвычайно сложная. Ее решение возможно лишь при широком использовании средств наглядности, учете индивидуальных возможностей каждого ребенка, его прошлого опыта, тех общих и индивидуальных трудностей, которые возникают у учащихся при изучении чисел первого десятка.

Информация о работе Теоретические основы формирования вычислительных навыков у детей младшего школьного возраста с нарушениями интеллекта