Автор работы: Пользователь скрыл имя, 18 Июня 2013 в 22:17, реферат
Слово «статистика» происходит от латинского слова «status» (статус), что означает состояние, положение вещей, событий. От корня этого слова образовалось итальянское слово «stato» - государство. В различных государствах, государственных деятелей, политиков называли «statista» (статиста). От этого же корня образовалось и существительное «statistica» (статистика). Термин "статистика" появился в середине 18 века. Означал "государствоведение". Получил распространение в монастырях. Постепенно приобрел собирательное значение.
С одной стороны, статистика – это совокупность числовых показателей, характеризующих общественные явления и процессы (статистика труда, статистика транспорта). С другой – под статистикой понимается практическая деятельность по сбору, обработке, анализу данных по различным направлениям общественной жизни. С третьей стороны, статистика – это итоги массового учета, опубликованные в различных сборниках.
Дециль характеризует распределение величин совокупности, при котором девять значений дециля делят её на десять равных частей. Любая из этих десяти частей составляет 1/10 всей совокупности. Так, первый дециль отделяет 10 % наименьших величин, лежащих ниже дециля от 90 % наибольших величин, лежащих выше дециля.
-ой перценти́лью называют квантиль уровня . При этом обычно рассматривают перцентили для целых , хотя данное требование не обязательно. Соответственно, медиана является 50-й перцентилью, а первый и третий квартиль — 25-й и 75-й перцентилями.
В целом, понятия квантиль и перцентиль взаимозаменяемы, также, как и шкалы исчисления вероятностей — абсолютная и процентная.
Перцентили также
называются процентилями или це
Квартили - порядковые характеристики, отделяющие четверти ранжированных совокупностей.
Кроме степенных средних в статистике для относительной характеристики величины варьирующего признака и внутреннего строения рядов распределения пользуются структурными средними, которые представлены ,в основном, модой и медианой.
Мода — это наиболее часто встречающийся вариант ряда. Мода применяется, например, при определении размера одежды, обуви, пользующейся наибольшим спросом у покупателей. Модой для дискретного ряда является варианта, обладающая наибольшей частотой. При вычислении моды для интервального вариационного ряда необходимо сначала определить модальный интервал (по максимальной частоте), а затем — значение модальной величины признака по формуле:
где:
Мода
— значение признака, имеющее наибольшую
частоту в статистическом ряду распределения.
Определение моды производится
разными способами, и это зависит от того,
представлен ли варьирующий признак в
виде дискретного или интервального ряда.
Нахождение моды и медианы в контрольных по статистике происходит путем обычного просматривания столбца частот. В этом столбце находят наибольшее число, характеризующее наибольшую частоту. Ей соответствует определенное значение признака, которое и является модой. В интервальном вариационном ряду модой приблизительно считают центральный вариант интервала с наибольшей частотой.
Мода обычно применяется тогда, когда сложно исчислить средние размеры
признака. В статистике модой называется величина признака чаще всего
встречающегося в данной совокупности.
, где
- мода,
- начальная граница модального признака, т.е. признака, обладающего наибольшей
численностью в данном распределении,
- величина модального интервала,
- частота интервала, предшествующего модальному,
- частота интервала, следующего за модальным.
Показатели вариации. Изменчивость
17.Показатели вариации. Виды и назначение.
Вариация — это различия индивидуальных значений признака у единиц изучаемой совокупности. Исследование вариации имеет большое практическое значение и является необходимым звеном в экономическом анализе. Необходимость изучения вариации связана с тем, что средняя, являясь равнодействующей, выполняет свою основную задачу с разной степенью точности: чем меньше различия индивидуальных значений признака, подлежащих осреднению, тем однороднее совокупность, а, следовательно, точнее и надежнее средняя, и наоборот. Следовательно по степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию.
Изменение вариации признака в совокупности осуществляется с помощью абсолютных и относительных показателей.
Размах вариации — это разность между максимальным и минимальным значениями признака
Он показывает пределы, в которых изменяется величина признака в изучаемой совокупности.
Пример
Опыт работы
у пяти претендентов на предшествующей
работе составляет: 2,3,4,7 и 9 лет.
Решение: размах вариации = 9 — 2 = 7 лет.
Для обобщенной характеристики различий в значениях признака вычисляют средние показатели вариации, основанные на учете отклонений от средней арифметической. За отклонение от средней принимается разность .
При этом во избежании превращения в нуль суммы отклонений вариантов признака от средней (нулевое свойство средней) приходится либо не учитывать знаки отклонения, то есть брать эту сумму по модулю , либо возводить значения отклонений в квадрат
Среднее линейное отклонение — это средняя арифметическая из абсолютных отклонений отдельных значений признака от средней.
Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет.
В нашем примере: лет;
Ответ: 2,4 года.
Среднее линейное отклонение взвешенное применяется для сгруппированных данных:
Среднее линейное отклонение в силу его условности применяется на практике сравнительно редко (в частности, для характеристики выполнения договорных обязательств по равномерности поставки; в анализе качества продукции с учетом технологических особенностей производства).
Наиболее совершенной характеристикой вариации является среднее квадратическое откложение, которое называют стандартом (или стандартным отклонение). Среднее квадратическое отклонение ( ) равно квадратному корню из среднего квадрата отклонений отдельных значений признака от средней арифметической:
Среднее квадратическое отклонение простое:
Среднее квадратическое отклонение взвешенное применяется для сгруппированных данных:
Между средним квадратическим и средним линейным отклонениями в условиях нормального распределения имеет место следующее соотношение: ~ 1,25.
Среднее квадратическое отклонение, являясь основной абсолютной мерой вариации, используется при определении значений ординат кривой нормального распределения, в расчетах, связанных с организацией выборочного наблюдения и установлением точности выборочных характеристик, а также при оценке границ вариации признака в однородной совокупности.
18.Свойства дисперсии.
Дисперсия в статистике находится как среднее квадратическое отклонение индивидуальных значений признака в квадрате от средней арифметической. В зависимости от исходных данных она определяется по формулам простой и взвешенной дисперсий:
1. Простая дисперсия (для несгруппированных данных) вычисляется по формуле:
2. Взвешенная дисперсия (для вариационного ряда):
где n - частота (повторяемость фактора Х)
1. Если все
значения признака уменьшить
(увеличить) на одну и ту
же постоянную величину, то дисперсия
от этого не изменится.
2. Если все значения признака уменьшить
(увеличить) в одно и то же число раз n, то
дисперсия соответственно уменьшится
(увеличить) в n^2 раз.
Свойства дисперсии
Дисперсия постоянной величины с равна нулю.
Доказательство: по определению дисперсии
При прибавлении к случайной величине Х неслучайной величины с ее дисперсия не меняется.
D[X+c] = D[X].
Доказательство: по определению дисперсии
(6.12)
3. При умножении случайной
Доказательство: по определению дисперсии
. (6.13)
Для среднего квадратичного отклонения это свойство имеет вид:
(6.14)
Действительно, при ½С½>1 величина сХ имеет возможные значения (по абсолютной величине), большие, чем величина Х. Следовательно, эти значения рассеяны вокруг математического ожидания М[сХ] больше, чем возможные значения Х вокруг М[X], т.е. . Если 0<½с½<1, то .
Информация о работе Статистика как наука и её информационная база