Статистика как наука и её информационная база

Автор работы: Пользователь скрыл имя, 18 Июня 2013 в 22:17, реферат

Описание работы

Слово «статистика» происходит от латинского слова «status» (статус), что означает состояние, положение вещей, событий. От корня этого слова образовалось итальянское слово «stato» - государство. В различных государствах, государственных деятелей, политиков называли «statista» (статиста). От этого же корня образовалось и существительное «statistica» (статистика). Термин "статистика" появился в середине 18 века. Означал "государствоведение". Получил распространение в монастырях. Постепенно приобрел собирательное значение.
С одной стороны, статистика – это совокупность числовых показателей, характеризующих общественные явления и процессы (статистика труда, статистика транспорта). С другой – под статистикой понимается практическая деятельность по сбору, обработке, анализу данных по различным направлениям общественной жизни. С третьей стороны, статистика – это итоги массового учета, опубликованные в различных сборниках.

Файлы: 1 файл

Вопросы по статистике.docx

— 369.88 Кб (Скачать файл)

Дециль характеризует распределение величин совокупности, при котором девять значений дециля делят её на десять равных частей. Любая из этих десяти частей составляет 1/10 всей совокупности. Так, первый дециль отделяет 10 % наименьших величин, лежащих ниже дециля от 90 % наибольших величин, лежащих выше дециля.

Перцентиль

-ой перценти́лью называют квантиль уровня . При этом обычно рассматривают перцентили для целых , хотя данное требование не обязательно. Соответственно, медиана является 50-й перцентилью, а первый и третий квартиль — 25-й и 75-й перцентилями.

В целом, понятия квантиль и перцентиль взаимозаменяемы, также, как и шкалы исчисления вероятностей — абсолютная и процентная.

Перцентили также  называются процентилями или центилями.

Квартили - порядковые характеристики, отделяющие четверти ранжированных совокупностей.

    1. Мода: понятие и методы расчета.

Кроме степенных  средних в статистике для относительной  характеристики величины варьирующего признака и внутреннего строения рядов распределения пользуются структурными средними, которые представлены ,в основном, модой и медианой.

Мода — это наиболее часто встречающийся вариант ряда. Мода применяется, например, при определении размера одежды, обуви, пользующейся наибольшим спросом у покупателей. Модой для дискретного ряда является варианта, обладающая наибольшей частотой. При вычислении моды для интервального вариационного ряда необходимо сначала определить модальный интервал (по максимальной частоте), а затем — значение модальной величины признака по формуле:

где:

  •  — значение моды
  •  — нижняя граница модального интервала
  •  — величина интервала
  •  — частота модального интервала
  •  — частота интервала, предшествующего модальному
  •  — частота интервала, следующего за модальным

Определение моды в статистике

Мода — значение признака, имеющее наибольшую частоту в статистическом ряду распределения. 
Определение моды производится разными способами, и это зависит от того, представлен ли варьирующий признак в виде дискретного или интервального ряда.

Нахождение моды и медианы в контрольных по статистике происходит путем обычного просматривания столбца частот. В этом столбце находят наибольшее число, характеризующее наибольшую частоту. Ей соответствует определенное значение признака, которое и является модой. В интервальном вариационном ряду модой приблизительно считают центральный вариант интервала с наибольшей частотой.

Мода обычно применяется тогда, когда сложно исчислить средние  размеры

признака. В статистике модой называется величина признака чаще всего

встречающегося в данной совокупности.

     , где

                      - мода,

                          

- начальная граница модального  признака, т.е. признака, обладающего  наибольшей

численностью в данном распределении,

                           - величина модального интервала,

                     - частота интервала, предшествующего модальному,

                     - частота интервала, следующего за модальным.

 

Показатели вариации. Изменчивость

17.Показатели  вариации. Виды и назначение.

Вариация — это различия индивидуальных значений признака у единиц изучаемой совокупности. Исследование вариации имеет большое практическое значение и является необходимым звеном в экономическом анализе. Необходимость изучения вариации связана с тем, что средняя, являясь равнодействующей, выполняет свою основную задачу с разной степенью точности: чем меньше различия индивидуальных значений признака, подлежащих осреднению, тем однороднее совокупность, а, следовательно, точнее и надежнее средняя, и наоборот. Следовательно по степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию.

Изменение вариации признака в совокупности осуществляется с помощью абсолютных и относительных показателей.

Абсолютные показатели вариации включают:

  • размах вариации 
  • среднее линейное отклонение 
  • дисперсию 
  • среднее квадратическое отклонение 

Размах вариации (R)


Размах вариации — это разность между максимальным и минимальным значениями признака

Он показывает пределы, в которых изменяется величина признака в изучаемой совокупности.

Пример

Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет. 
Решение: размах вариации = 9 — 2 = 7 лет.

Для обобщенной характеристики различий в значениях  признака вычисляют средние показатели вариации, основанные на учете отклонений от средней арифметической. За отклонение от средней принимается разность  .

При этом во избежании превращения в нуль суммы отклонений вариантов признака от средней (нулевое свойство средней) приходится либо не учитывать знаки отклонения, то есть брать эту сумму по модулю  , либо возводить значения отклонений в квадрат 

Среднее линейное и квадратическое отклонение


Среднее линейное отклонение   — это средняя арифметическая из абсолютных отклонений отдельных значений признака от средней.

Среднее линейное отклонение простое:

Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет.

В нашем примере:   лет;

Ответ: 2,4 года.

Среднее линейное отклонение взвешенное применяется для сгруппированных данных:

Среднее линейное отклонение в силу его условности применяется на практике сравнительно редко (в частности, для характеристики выполнения договорных обязательств по равномерности поставки; в анализе  качества продукции с учетом технологических  особенностей производства).

Среднее квадратическое отклонение

Наиболее совершенной  характеристикой вариации является среднее квадратическое откложение, которое называют стандартом (или стандартным отклонение). Среднее квадратическое отклонение ( ) равно квадратному корню из среднего квадрата отклонений отдельных значений признака от средней арифметической:

Среднее квадратическое отклонение простое:

Среднее квадратическое отклонение взвешенное применяется для сгруппированных данных:

Между средним  квадратическим и средним линейным отклонениями в условиях нормального распределения имеет место следующее соотношение:   ~ 1,25.

Среднее квадратическое отклонение, являясь основной абсолютной мерой вариации, используется при определении значений ординат кривой нормального распределения, в расчетах, связанных с организацией выборочного наблюдения и установлением точности выборочных характеристик, а также при оценке границ вариации признака в однородной совокупности.

 

18.Свойства  дисперсии.

Понятие дисперсии

Дисперсия в статистике находится как среднее квадратическое отклонение индивидуальных значений признака в квадрате от средней арифметической. В зависимости от исходных данных она определяется по формулам простой и взвешенной дисперсий:

1. Простая дисперсия (для несгруппированных данных) вычисляется по формуле:

2. Взвешенная  дисперсия (для вариационного  ряда):

где n - частота (повторяемость фактора Х)

Свойства  дисперсии

1. Если все  значения признака уменьшить  (увеличить) на одну и ту  же постоянную величину, то дисперсия  от этого не изменится. 
2. Если все значения признака уменьшить (увеличить) в одно и то же число раз n, то дисперсия соответственно уменьшится (увеличить) в n^2 раз.

Свойства дисперсии

Дисперсия постоянной величины с равна нулю.

Доказательство: по определению дисперсии

При прибавлении к случайной  величине Х неслучайной величины с ее дисперсия не меняется.

D[X+c] = D[X].

Доказательство: по определению дисперсии

(6.12)

3. При умножении случайной величины Х на неслучайную величину с ее дисперсия умножается на с2.

Доказательство: по определению дисперсии

. (6.13)

Для среднего квадратичного отклонения это свойство имеет вид:

(6.14)

Действительно, при ½С½>1 величина сХ имеет возможные значения (по абсолютной величине), большие, чем величина Х. Следовательно, эти значения рассеяны вокруг математического ожидания М[сХ] больше, чем возможные значения Х вокруг М[X], т.е.  . Если 0<½с½<1, то  .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Информация о работе Статистика как наука и её информационная база