Применение белковых гидролизатов БАД

Автор работы: Пользователь скрыл имя, 21 Марта 2013 в 14:56, реферат

Описание работы

В связи с изменившейся сырьевой базой, снижением добычи традиционных объектов промысла актуальной задачей является разработка ресурсосберегающих технологий использования гидробионтов. По последним данным,около 300 млн.т.
Особенно остро стоит вопрос рационального использования отходов разделки беспозвоночных,кальмара, морского гребешка и других объектов промысла, поскольку, не представляя коммерческого интереса, отходы могут просто выбрасываться, создавая дополнительную нагрузку на экосферу.

Файлы: 1 файл

Области применения белковых гидрализатов БАД - копия.doc

— 154.50 Кб (Скачать файл)

При дефиците триптофана нарушается синтез гемоглобина, развивается гипоальбуминемия. Применяется при лечении депрессии, бессонницы, мигрени, для стабилизации настроения, при контроле за массой тела и для стимуляции выделения гормона роста.

Треонин (3 % сухой массы) - входит в состав всех белков, за исключением протаминов. Поддерживает липотропную функцию печени совместно с метионином и аспартамом. Треонин играет важную роль в образовании коллагена и эластина, повышает иммунитет, участвует в производстве антител, способствует улучшению пищеварения.

Валин (2,5 % сухой массы) - служит одним из исходных веществ при биосинтезе витамина В3 и пенициллина. Необходим для восстановления поврежденных тканей и метаболических процессов в мышцах при тяжелых нагрузках и для поддержания нормального обмена азота в организме, оказывает стимулирующее действие на умственные способности.

При дефиците валина может повреждаться миелиновое покрытие нервных волокон  и возникать отрицательный водородный баланс организма, расстройства координации движений, гиперестезия.

Изолейцин (2 % сухой массы) - необходим для образования гемоглобина, стабилизирует уровень сахара в крови, восстанавливает мышечные ткани, ускоряет процесс выработки энергии. При недостаточности ферментов, катализирующих декарбоксилирование изолейцина, возникает кетоацидурия.

Метионин (2 % сухой массы) -входит в состав белков, служит донором метильных групп при биосинтезе холина, адреналина, а также источником серы при биосинтезе цистеина и таурина. Необходим для поддержания роста и азотистого равновесия организма. Обеспечивает дезинтоксикационные процессы, прежде всего при связывании тяжелых металлов, эндогенных и экзогенных токсинов. В организме метионин переходит в цистеин, который является предшественником глутатиона. Оказывает выраженное антиоксидантное действие, так как является источником серы, инактивирующей свободные радикалы. Особая роль этой аминокислоты в обмене веществ связана с тем, что она содержит подвижную метильную группу, которая может передаваться на другие соединения, участвуя в важном для жизнедеятельности организма процессе переметилирования.Помогает переработке жиров, предотвращая их отложение в печени и стенках артерий, снижает уровень холестерина. Способствует образованию костной ткани, препятствует заболеванию ногтей и волос, защищает почки, оказывает положительное действие на функцию надпочечников.

 

 

2. Частично заменимые аминокислоты:

Аргинин (4 % сухой массы) - в организме присутствует в свободном виде и в составе белков. Участвует в синтезе мочевины, способствует поддержанию оптимального азотистого обмена. Замедляет рост опухолей. Оказывает стимулирующее действие на иммунную систему организма, повышая активность вилочковой железы, активизирует образование T-лимфоцитов. Стимулирует выработку гормона роста, что вызывает некоторое уменьшение запасов жира в организме. Аргинин повышает половую активность у мужчин за счет восстановления эректильной функции и стимуляции сперматогенеза.

Дефицит аргинина может вызвать  выпадение волос, запоры, заболевания печени и медленное заживление ран. Применяют при заболеваниях печени (цирроз и жировая дистрофия), так как он способствует дезинтоксикационным процессам в печени (прежде всего обезвреживанию аммиака).  
Гистидин (1 % сухой массы) – входит в состав активных центров многих ферментов, глутатиона, а также группы гистидинсодержащих дипептидов (карнозин, анзерин, офидин, метилгистидин и других). Стимулирует кроветворение и образование гемоглобина. Усиливает секрецию соляной кислоты и пепсина в желудке. Регулирует уровень сахара в крови. Гистидин способствует улучшению половой функции, так как производное гистидина - гистамин положительно влияет на эректильную функцию и усиливает половое возбуждение. Гистидин имеет в своем составе имидазольную группу, несущую на себе положительный заряд и может служить акцептором протона. Гистидин способен нейтрализовать синглетный кислород, сопутствующий продукт в реакциях, катализируемых пероксидазами.

3.Заменимые аминокислоты:

Глицин (11 % сухой массы) - является центральным нейромедиатором тормозного типа действия, улучшает метаболические процессы в тканях мозга, ослабляет влечение к алкоголю, оказывает положительное влияние при мышечных дистрофиях, так как является предшественником креатинина, уменьшает повышенную раздражительность, оказывает седативное действие, нормализует сон, улучшает циркуляцию крови, усиливает основной обмен, снижает уровень сахара в крови. Необходим для нормального функционирования предстательной железы и заживления ран.

Фармакологический препарат L-глицина  оказывает седативное, мягкое транквилизирующее  и слабое антидепрессивное действие, уменьшает чувство тревоги, страха, психоэмоционального напряжения, усиливает  действие противосудорожных препаратов, антидепрессантов, антипсихотиков, уменьшает проявления алкогольной и опиатной абстиненции. Обладает ноотропными свойствами, улучшает память и ассоциативные процессы.

Применяют при стрессовых состояниях, психоэмоциональном напряжении, повышенной возбудимости, эмоциональной лабильности, неврозах, вегетососудистой дистонии, энцефалопатии, снижении умственной работоспособности, нарушении сна.

Глутаминовая  кислота (4 % сухой массы) - обладает уникальным свойством присоединять дополнительный атом азота, являясь организатором синтеза различных белков (перенос азота), либо связывая избыток азота (в том числе аммиак), который может вызывать нарушение работы различных органов, прежде всего мозга и печени. В центральной нервной системе глутаминовая кислота является возбуждающим нейромедиатором. Связывание аниона глутамата со специфическими рецепторами нейронов приводит к возбуждению нейронов и усилению передачи нервных импульсов. Глутаминовая кислота является важной составляющей мышечной ткани, воздействует на гормон роста.

Фармакологический препарат глутаминовой кислоты оказывает умеренное психостимулирующее, энергизирующее, возбуждающее и отчасти ноотропное действие.

Аланин (3 % сухой массы)- является составной частью таких незаменимых нутриентов как пантотеновая кислота и коэнзим А. Нормализует метаболизм углеводов, укрепляет иммунную систему, участвует в метаболизме глюкозы, снижает риск образования камней в почках. Аланин легко превращается в печени в глюкозу и наоборот. Этот процесс носит название глюкозо-аланинового цикла и является одним из основных путей глюконеогенеза в печени.

Аспарагиновая кислота (3 % сухой массы) - в организме присутствует в свободном виде и в составе белков. Играет важную роль в обмене азотистых веществ, участвует в образовании пиримидиновых оснований мочевины. Аспарагиновая кислота и аспарагин являются критически важными для роста и размножения лейкозных клеток при некоторых видах лимфолейкоза. Фермент микробного происхождения L-аспарагиназа, нарушающий превращение аспарагиновой кислоты в аспарагин и наоборот, оказывает сильное специфическое цитостатическое действие при этих видах лейкозов.

Биологическое действие аспарагиновой  кислоты - иммуномодулирующее, повышающее физическую выносливость, нормализующее  баланс возбуждения и торможения в центральной нервной системе.

Серин (1,5 % сухой массы)- участвует в построении почти всех природных белков. В организме человека он может синтезироваться из промежуточного продукта гликолиза — 3-фосфоглицерата. Серин участвует в образовании активных центров ряда ферментов (эстераз, пептидгидролаз), обеспечивая их функцию. Фосфорилирование остатков серина в составе белков имеет значение в механизмах межклеточной передачи сигналов. Кроме того, серин участвует в биосинтезе ряда других заменимых аминокислот: глицина, цистеина, метионина, триптофана. Серин является исходным продуктом синтеза пуриновых и пиримидиновых оснований, сфинголипидов, этаноламина, и других важных продуктов обмена веществ. В процессе распада в организме серин подвергается прямому или опосредованному дезаминированию с образованием пировиноградной кислоты, которая в дальнейшем включается в цикл Кребса. Биологическое действие серина - иммуномодулирующее, улучшающее структуру кожи, улучшающее нервно-мышечное взаимодействие.

Серин применяют при интенсивных  физических тренировках, хронической усталости, фибромиалгиях, болезни Паркинсона, атеросклерозе, сахарном диабете, остеоартрите, циррозе печени, ухудшении состояния волос, алопеции, ломкости и расслоении ногтей, для защиты иммунной системы.

Тирозин (1 % сухой массы) - входит в состав множества природных белков и ферментов, в некоторых из которых тирозину принадлежит важная роль регуляции их функциональной активности. Является предшественником нейромедиаторов норадреналина и дофамина. При присоединении к тирозину атомов йода образуются тиреоидные гормоны. Эта аминокислота участвует в регуляции настроения. Недостаток тирозина приводит к дефициту норадреналина, что, в свою очередь приводит к депрессии. Тирозин подавляет аппетит, способствует уменьшению отложения жиров и выработке мелатонина, улучшает функции надпочечников, щитовидной железы и гипофиза. Симптомами дефицита тирозина также являются пониженное артериальное давление и низкая температура тела. Тирозин может синтезироваться из фенилаланина в организме человека. Образование тирозина в организме в большей степени необходимо для удаления избытка фенилаланина, а не для восстановления запасов тирозина, так как он обычно в достаточном объёме поступает с белками пищи, и его дефицита, как правило, не возникает.

Пролин (1 % сухой массы) - входит в состав всех белков организма, участвует в синтезе коллагена, восстанавливает структуру соединительной ткани (в том числе опорно-двигательного аппарата, паренхиматозных органов, сердца). В составе коллагена пролин при участии аскорбиновой кислоты окисляется в оксипролин. Чередующиеся остатки пролина и оксипролина способствуют созданию стабильной трёхспиральной структуры коллагена, придающей молекуле прочность. В организме пролин синтезируется из глутаминовой кислоты.

Таурин (8 % сухой массы) - образуется в организме при ферментативном окислении сульфгидрильной группы цистеина с участием цистеиндеоксигеназы и последующим декарбоксилированием. Таурин образует в печени конъюгаты с желчными кислотами (например, таурохолевая и тауродезоксихолевая кислоты), которые входят в состав желчи, и, будучи поверхностно-активными веществами, способствуют эмульгированию жиров в кишечнике. Таурин участвует в регуляции уровня холестерина в крови и процессах абсорбции жирорастворимых витаминов. Стимулирует выделение инсулина и регулирует содержание глюкозы в крови - поэтому его используют для лечения сахарного диабета. В мозге таурин играет роль нейромедиаторной аминокислоты, тормозящей синаптическую передачу, обладает противосудорожной активностью, участвует в проведении нервного импульса, способствует улучшению памяти и умственной работоспособности, повышению концентрации внимания, редукции неврозоподобных и сомато-вегетативных нарушений, положительно влияет на высшие корковые функции головного мозга. Оказывает кардиотропное действие (защищает кардиомиоциты от разнообразных повреждающих факторов, оказывает тонизирующее действие на сердечную мышцу), регулирует артериальное давление. Способствует нормализации функции клеточных мембран, сохранению электролитного состава цитоплазмы (за счет накопления ионов калия и кальция), пролиферации клеток в культуре лимфоцитов человека и фибробластов плода, регуляции метаболических процессов – энергетического, углеводного, белкового, осморегуляции. Стимулирует репаративные процессы при дистрофических нарушениях сетчатки глаза, травматических поражениях тканей глаза, улучшает светочувствительность сетчатки, являясь безвредным средством улучшения зрения в условиях низкой освещенности. Помимо нейромедиаторной, таурин в сетчатке выполняет регенеративную функцию. Недостаток таурина в хрусталике и роговице приводит к катаракте.

Применяют таурин при дистрофических поражениях сетчатки и роговицы, катаракте (старческая, диабетическая, травматическая, лучевая), травмах роговицы, открытоугольной глаукоме, сердечно-сосудистой недостаточности различной этиологии (в т.ч. на фоне интоксикации сердечными гликозидами).

Гистидинсодержащие  дипептиды (2-4 % сухой массы) - карнозин, анзерин, офидин и др. Карнозин образуется при ферментативной реакции b-аланина и гистидина. Офидин и анзерин (метилированное производное карнозина) являются составной частью экстрактивных веществ мышечной ткани. Основным местом локализации карнозина являются скелетные мышцы, причем наибольшее содержание дипептида отмечается в мышцах, несущих большую физическую нагрузку. В мышцах карнозин и анзерин выполняют буферные функции за счет входящего в их состав имидазольного кольца гистидина. Еще одна важная функция дипептидов – хелатирующая способность, поддерживающая на оптимальном уровне концентрацию ионов переменной валентности – железа, меди и цинка. Карнозин, и родственные ему соединения обладают антиоксидантным действием, предотвращающим разрушение клеток и тканей свободными радикалами, так как служат ловушкой пероксильных и гидроксидных радикалов, синглетного кислорода и супероксид-аниона кислорода. Карнозин и его производные положительно влияют на сократимость утомленных мышц, способны снижать артериальное давление, нормализовать дыхание, индуцировать сон, снижать гиперактивность. Карнозин обладает адаптогенными свойствами и оказывает мембранопротекторное, антистрессорное, радиопротекторное, иммуномодулирующее действие.

Карнозин применяют при лечении  гипертонической болезни, язвы желудка, полиартритов и других патологий.

Аминокислоты и препараты, содержащие комплекс аминокислот, всегда рассматривались  в качестве источника эссенциальных  компонентов, строительного материала  для синтеза белка или выполнения специфических функций. В то же время  такие препараты могут быть использованы и для антиоксидантной защиты. Особенно это касается комплексных препаратов, содержащих различные аминокислоты, а также дипептиды, дополняющие друг друга и принимающие участие в окислительно-восстановительных реакциях. Большинство аминокислот, содержащихся в моллюсках, являются непременными участниками белкового обмена в организме человека, оказывают значительное стимулирующее действие на его функции.

В реакциях биологического окисления  ферментативные и неферментативные процессы приводят к образованию активных форм кислорода (АФК). В организме млекопитающих существует множество ферментативных и неферментативных путей одноэлектронного восстановления кислорода. Каждый живой организм постоянно и целенаправленно продуцирует свободные радикалы, которые являются важнейшими модуляторами и регуляторами практически всех процессов жизнедеятельности.

Свободные радикалы представляют собой  чрезвычайно активные молекулы, образующиеся в процессе жизнедеятельности организма, а также при воздействии неблагоприятных  факторов окружающей среды (радиация, загрязненная атмосфера, табачный дым, химические соединения, попадающие в организм с пищей и т.д.). Такие молекулы стремятся отнять электрон у других 'полноценных' молекул, вследствие чего 'пострадавшая' молекула становится свободным радикалом – развивается разрушительная цепная реакция, губительно действующая на живую клетку. Цепные реакции с участием свободных радикалов могут являться причиной многих опасных заболеваний, таких как стресс, астма, диабет, артриты, варикозное расширение вен, атеросклероз, болезни сердца, флебиты, болезнь Паркинсона, болезнь Альцгеймера, депрессии и пр.

Информация о работе Применение белковых гидролизатов БАД