Автор работы: Пользователь скрыл имя, 19 Января 2013 в 18:35, шпаргалка
1. Предмет, задачи и основные этапы развития медицинской микробиологии, вирусологии и иммунологии.
2. Методы диагностики инфекционных заболеваний.
3. Систематика микроорганизмов. Классификация, идентификация и номенклатура. Понятие вида в микробиологии.
4. Гено- и фенотипические характеристики, используемые для изучения микроорганизмов.
Для выделения чистых культур применяют оптимальные питательные среды с фиксированным рН. Большинство б! способны расти на разл пит средах, за исключением хламидий и риккетсий, к/е не растут вне ##.
Дифференциально-
Дифф.-диагн. среды Эндо, Левина, Плоскирева прм для диагностики кишечных заболеваний (шигеллёзов, сальмонеллёзов). Готовятся они в чашках Петри, в основе МПА + лактоза (ферментируется только E.coli, но не патогенными мкÒ) + индикатор.
ЭНДО. Индикатор по типу индикатора Андреде, лучше держать в тёмном месте. Растущая колония E.coli вырабатывает конечные продукты → окраска красная, часто с металлическим блеском; Shigella и Salmonella → бесцветные колонии.
ЛЕВИНА. Индикатор - эозин-метилениовая синь, при рН ³ 7 имеет цвет эозина (розовый), в кислой среде – восстанавливается метиленовый синий (цвет тёмно-синий). Колнии E.coli → окраска тёмно-синяя, Shigella и Salmonella → бесцветные колонии (под цвет среды).
ПЛОСКИРЕВА. Индикатор – нейтральный красный; рН=7 бесцветный (патогенный б!), рН<7 розово-красный (E.coli). И ещё присутствуют 2 добавки: бриллиантовый зелёный и соли жёлчных кислот. На т/й среде угнетается рост воздушной мкФ, к тому же на ней не растут многие (но не все) штаммы E.coli.
РЕССЕЛЯ. Эта среда комбинированная, готовится в пробирке, половина –скошенная часть, другая – столбик. В среду входят МПА (среда полужидкая), лактоза (1%), глюкоза (0,1%), индикаторы (розоловая к-та и водно-голубой). При рН=7 среда окрашивается в розовый цвет (за счёт розоловой к-ты), рН<7 – в синий. Иногда добавляют бром-тимоловый синий, рН=7 – сине-зеленовытый, рН<7 – бесцветный. Рассев производят по поверхности скошенной части и уколом в глубину столбика. E.coli → среда обсцвечивается и появляются пузыри газа, Shigella и Salmonella → цв изм-ся только в столбике, а скошенная часть останется без изменений, т.к. наилучшие условия для ферментации глюкозы – анаэробные, наиболее активно она будет распадаться в столбике, образуя кисл продукты, газа не будет. У Salmonella paratyphi → то же плюс газ.
Также с дифф-диагн. целью используют другие ферментативные свойства. Напр, «пёстрый» (цветной) РЯД ГИССА – пептонная вода и различные углеводы + индикатор (Андреде = кислый фуксин + щёлочь) и стеклянный поплавок для улавливания газа. Из углеводов наиболее часто применяют моносахариды (глюкоза, ксилоза, арабиноза, фруктоза, манноза, галактоза), дисахариды (сахароза, мальтоза, лактоза), полисахариды (крахмал, гликоген, инулин, декстрин) и гликозиды. Среды засевают, и если мкÒ имеет соответствующий фермент, то образуются кислоты, они восстанавливают фуксин и среда приобретает красный цвет. Если при окислении углеводов выделяется СО2, то он скапливается в поплавке. Белки расщепляются протеолитическими ферментами до АК, а они в свою очередь распадаются до простых соед-й (СО2, NН3 и др). На практике для определения этих ферментов опред-ют индол (+щавелевая кислота → краснеет) и сероводород (H2S) (+ уксусно-кислый Pb → чернеет).
Также определяют наличие плазмокоагулазы (по свёртыванию плазмы крови), гиалуронидазы (по р-рению сгустка гиалуроновой кислоты в пробирке в жидкой среде), лецитиназы (лецитин входит в состав # стенок, при добавлении в среду и его разрушении – ЖСА – скапливаются продукты обмена Þ помутнение; этот фермент есть у Staphylococcus aureus, а у St. epidermidis – нет).
21. Типы дыхания микроорганизмов. Методы создания анаэробных условий для культивирования. Основные принципы культивирования.
В процессе обмена в-в мкÒ постоянно нуждаются в притоке энергии. Она освобождается при ок-ии пит в-в и в виде АТФ исп-ся клеткой. Сущность ок-я закл-ся в переносе электронов и протонов от донора к акцептору. У мкÒ чаще происходит отщепление 2 атомов Н (дегидрирование) от акцептора при участии ДГ. Биол ок-е может проходить как при участии О2, так и без него. По отношению к О2 выделяют следующие группы мкÒ:
1) ОБЛИГАТНЫЕ АЭРОБЫ. Способны плч энергию путём дыхания. Причём обязательно нуждаются в О2, который используют в качестве конечного акцептора водорода.
2) ОБЛИГАТНЫЕ АНАЭРОБЫ. Процессы биол ок-я протекают у них по типу брожения, а расти и размножаться они могут только в бескислородных условиях, в присутствии О2 гибнут. Конечным акцептором водорода являются орг соед-я – чаще всего восстанавливается ПВК.
3) ФАКУЛЬТАТИВНЫЕ АНАЭРОБЫ. Могут расти и размножаться и в присутствии и в отсутствии О2, т.к. их ферментная система способна переключаться с одного типа дыхания на другой.
4) МИКРОАЭРОФИЛЫ. Лучше растут при низком содержании О2 и повышенном СО2 («капнофильные мкÒ»).
5) АЭРОТОЛЕРАНТНЫЕ. Могут
Т.о, факультативные анаэробы выращивают при пониженном содержании кислорода, облигатные – при полном его отсутствии, что достигается путем посева материалов внутрь жидкой или полутвердой питательной среды.
Условия культивирования. Наиболее пригодной для выращивания бактерий–анаэробов является среда Китта–Тароцци (среда обогащения), состоящая из концентрированного МПБ, глюкозы и агара. На дно пробирки для адсорбции кислорода помещают кусочки вареной печени или фарша слоем 1,0–1,5 см и заливают 6–7 мл среды. Перед посевом среду кипятят 10–15 мин для удаления воздуха, затем быстро охлаждают, а после посева заливают стерильным вазелиновым маслом. Материал, содержащий спороносные анаэробы, высевают в две пробирки со средой Китта–Тароцци, одну из них прогревают 30 мин при температуре 80°С для уничтожения вегетативных форм сопутствующей микрофлоры.
Посевы на поверхности плотных сред, разлитых в чашки Петри, культивируют в макро– или микроанаэростате.
Макроанаэростат представляет собой двухстенный аппарат с крышкой. Между стенками аппарата находится вода, источником тепла служит электричество, терморегулятор обеспечивает постоянную температуру. Посевы помещают в анаэростат после того, как температура в нем будет доведена до 37°С, и герметически закрывают крышкой. Анаэростат соединяют с вакуум–насосом и, выкачивая воздух, создают вакуум 3–5 мм. Посевы инкубируют в анаэростате обычно в течение 48 ч. Имеются также портативные анаэростаты. Это небольшие металлические цилиндры с герметически закрывающейся крышкой, постоянная температура в которых создается при помещении их в термостат.
Особенности выделения бактерий–анаэробов. В первый день исследуемый материал микроскопируют и высевают в среду Китта–Тароцци градуированной или пастеровской пипеткой, прогревают при температуре 80°С в течение 30 мин, заливают вазелиновым маслом и посевы помещают в термостат. На второй день помутневшую (нередко вспенившуюся) среду обогащения набирают пастеровской пипеткой, которую опускают через слой вазелинового масла до дна пробирки.
Выделенную культуру микроскопируют и пересевают на плотные питательные среды. Изолированные колонии получают последовательным засевом шпателем бульонной культуры в три чашки Петри с кровяно–сахарным агаром. Чашки Петри помещают в анаэростат при температуре 37°С на 24–48 ч или культуру засевают в столбики расплавленных и остуженных сахарных агаров после предварительного разведения в изотоническом растворе натрия хлорида. На третьи сутки изучают выросшие на чашках Петри колонии (или извлекают колонии из столбиков агара), делают из них мазки, высевают на среду Китта–Тароцци для обогащения чистой культуры.
Чтобы установить видовую принадлежность выделенной культуры бактерий, кроме изучения морфологических, тинкториальных и культуральных особенностей, необходимо определить на ряде Гисса их ферментативные свойства.
Т.о, используют следующие методы получения анаэробных условий:
- ФИЗИЧЕСКИЙ (анаэростат)
- ХИМИЧЕСКИЙ (оксикатор, сорбент – пирогаллол)
- БИОЛОГИЧЕСКИЙ
- Метод ФОРТНЕРА – чашку петри пополам, заливают парафином
- Метод ЧАСОВЫХ СТЁКОЛ –
- с использованием спец. пит. сред
- уколом в среду ВИЛЬСОН–БЛЕРА (колонии чёрные)
- в стеклянной трубке.
22. Рост и размножение
Рост клеток – координированное воспроизведение всех клеточных компонентов и структур, ведущее в конечном итоге к увеличению массы клетки.
Размножение клеток – увеличение числа клеток. Происходит либо путем поперечного деления, возникающего в процессе роста, либо, что встречается реже, почкованием, либо путем образования спор. Большинство прокариотов (в т.ч. спирохеты и риккетсии) размножается поперечным делением. Актиномицетфы размножаются путем фрагментации нитевидных клеток с образованием палочковидных и кокковидных клеток. Представители сем. Streptomycetaceae образуют воздушные гифы, от которых отшнуровываются споры, служащие для размножения. Хламидии проходят при размножении определенный цикл (элементарные и ретикулиновые тельца), чем отличаются от других прокариотов.
23. Классификация, структура и особенности биологии вирусов.
В! – не облад собственным обменом в-в Þ нуждается в живой #. Причём, чем моложе # и чем интенсивнее протекают в ней обменные процессы, тем лучше и быстрее репродуцируется В! (эмбриональные, раковые ##).
Классификация и морфология:
в зависимости от #-хозяина: р!, ж!, б!, чка.
от локализации в # : в цтпл, в яд.
от типа НК: ДНК– и РНК–овые.
от строения: простые, сложные
ПРОСТЫЕ В! состоят из НК, покрытой белковой оболочкой (КАПСИД), к/я защищает НК от разл воздействий. Она состоит из отдельных субъединиц (КАПСОМЕРОВ), их кол-во разл у разн В!!.
СЛОЖНЫЕ – т/же им НК, капсид, СУПЕРКАПСИДНАЯ ОБОЛОЧКА, в состав которой кроме белка входят липиды и углеводы. У нек сложных в!! на поверхности есть выросты – нейраминидазы и гемагглютинины (вирус гриппа).
Особенность биологии вирусов: это облигатные внутриклеточные паразиты.
24. Основные этапы и исходы взаимодействия вируса с клеткой хозяина.
Взаимодействие с # хозяина:
АДСОРБЦИЯ в! на поверхности #. Она м.б. обратимой и необратимой. При приближении в! к #, происходит взаимодействие его специфических рецепторов с комплементарными структурами #. Если взаимодействие по типу хим реакции – НЕОБРАТИМОЕ, если слабое взд – ОБРАТИМОЕ.
ПРОНИКНОВЕНИЕ в! в #. Некоторые в!! (бактериофаги) вводят только НК, другие – полностью проникают в # со всеми своими оболочками.
«РАЗДЕВАНИЕ». Собственные ферменты #, принимая в! за чужеродное в-во, начинают расщеплять оболочки, помогая ему освободить свою НК.
НК в! БЛОКИРУЕТ ГЕНОМ # ХОЗЯИНА, выключает его из работы и берёт управление всеми БХ процессами под свой контроль. # перестаёт выполнять свою работу и начинает производить новые в! частицы, причём на рибосомах синтезируются капсомеры, в ядре (или цтпл) ген материал.
САМОСБОРКА ВИРУСА.
ВЫХОД В!. Если вирус простой, то покидает # взрывоподобно, все в! частицы выходят одновременно, а # ЛИЗИРУЕТСЯ. Если сложный – то выходит плавно, отпочковываясь, достраивая при этом суперкапсид. # не погибает, какое-то время она сохраняет свою жизнеспособность, но в полной мере выполнять свои функции уже не может. Т/е больные клетки округляются, сливаются в многоядерный синцитий…
Т.о., в результате взаимодействия ИНФЕКЦИОННОГО ВИРУСА с # она либо погибает, либо остаётся живой, но больной.
НЕИНФЕКЦИОННЫЕ ВИРУСЫ проходят те же стадии, но их НК не блокирует, а встраивается в геном #, мирно с ней сосуществует и ни чем себя не проявляет. Материнская # делится, а генетический материал вируса попадает в дочерние ##. Т/е в!! называются ЛАТЕНТНЫМИ (или СКРЫТОЙ ИНФЕКЦИЕЙ), т.е. происходит персистенция в!. Активизация начинается обычно при ослаблении организма, НК выходит из генома и начинает вести себя как вирулентный инфекционный вирус. Интегрированный с клеточным геномом хозяина вирус наз ПРОВИРУСОМ, а процесс объединения в! с хр (НК) наз-ся ВИРОГЕНИЯ.
Исходы взаимодействия вируса с клеткой:
гибель или болезнь хозяина
персистирование, затем в! может активироваться или # станет опухолевой.
Абортивный исход. Вирус проникает в #, но погибает и дальнейшего процесса не происходит.
25. Основные методы
Впервые ## культуры были использованы в 50-х гг. Клетки клсф-ся на:
1) ПЕРВИЧНО ТРИПСИНИЗИРОВАННЫЕ. Их
получают из эмбриональной тк
чка, обезьян и т.д. Тк
Если к поддерживающей
среде добавить СЫВОРОТКУ КРОВИ,
в к/й содержится спец белок ПЕТУИН,
стимулирующий размножение (