Автор работы: Пользователь скрыл имя, 08 Декабря 2013 в 22:10, курсовая работа
В настоящее время общество встало на путь перехода к рыночной экономике. Этот процесс займет длительный период и будет проходить со многими противодействиями, осложнениями и успехами. Поэтому в сложной, противоречивой экономической ситуации необходимо выявление намечающихся тенденций, определяющих будущее народного хозяйства, а также составление прогноза на перспективу, который является неотъемлемой составной частью планирования в экономике с целью обеспечения устойчивости объемов производства продукции и эффективности производства в целом. Эти задачи в современной экономике решает прогнозирование, статистический характер которого из-за используемых методов при решении данных проблем экономического развития признают многие ученые-экономисты.
Введение. 3
1. Основные методы статистического прогнозирования. 5
2. Методика авторегрессионого прогнозирования урожайности сельскохозяйственных культур по тренду и колеблемости. 14
2.1. Методы изучения тренда динамического ряда. 14
2.2 Анализ колеблемости уровней динамического ряда. 19
2.3. Прогнозирование на основе динамических рядов. 24
3. Природно-экономические условия выращивания сельскохозяйственных культур в Орловской области. 31
4. Авторегрессионое прогнозирование урожайности зерновых культур. 34
5. Индексный анализ урожайности сельскохозяйственных культур. 49
6. Статистическая отчетность об урожае и урожайности. 52
Заключение. 54
Список литературы.. 56
Большинство статистиков решает задачу определения параметров тренда способом наименьших квадратов, минимизируя сумму квадратов отклонений отдельных уровней от тренда. Существуют методы построения «нормальных уравнений» способом наименьших квадратов для прямой линии, парабол второго и третьего порядка, экспоненциальной кривой. При этом целесообразно переносить начало отчета времени в середину выравниваемого динамического ряда, система нормальных уравнений заметно упрощаются и уменьшается объем вычислительной работы.
Другим приемом построения систем нормальных уравнений методом наименьших квадратов для тех типов уравнений тренда, которые приводимы к линейному виду, является замена переменных.
Среднегодовые цепные и базисные показатели динамики хорошо описывают развитие явления во времени, когда динамические ряды меняются плавно. Для рядов, подверженных значительной колеблемости эти показатели могут сильно искажать действительную тенденцию, так как величина их определяется значением уровней динамического ряда, стоящих на концах изучаемого периода. Поэтому применяют другие показатели, в меньшей степени зависящие от значений, стоящих на концах ряда. Эти показатели исчисляются на основе аналитического выравнивания. Под аналитическим выравниванием понимают оптимальное в смысле заданного критерия выравнивание динамического ряда с обязательным аналитическим выражением тренда в виде некоторой кривой. Так, для выражения среднегодового прироста, полученного с помощью аналитического выравнивания и называемого выровненным приростом, применяют только линейное уравнение, а для выражения показателя среднегодового коэффициента и темпа роста служит выравнивание ряда по показательной кривой. Если развитие экономического процесса происходит с ускорением, целесообразно наряду со средней скоростью исчислять и величину среднегодового ускорения, для чего динамический ряд выравнивают по параболе второго порядка.
Для определения параметров тренда в сильно колеблющемся ряду применяют метод многократного аналитического выравнивания, так как чем сильнее колеблемость и чем короче динамический ряд, тем больше влияние случайного распределения отклонений от тренда искажает значения параметров, полученных при однократном аналитическом выравнивании.
Показатели эффективности производства и влияющие на них факторы могут находиться в стохастической или функциональной связи. В первом случае для их изучения применяются вероятностные методы, во втором – методы функционального анализа, к котором относится индексный анализ. Он изучает изменение в динамике показателей под влиянием факторов, которые являются составными частями показателя и служит для изучения односторонних причинных связей, отражая на самом деле не причинные, а структурные или объемные изменения показателя и выражая тем самым следствия действительных причин.
2.2 Анализ колеблемости уровней динамического ряда
Колебаниями уровней динамических
рядов называют их отклонения от тренда,
выражающего тенденцию
В любой отрасли производства и любом социальном процессе появляется динамическое единство необходимости и случайности, служащее общим причинным обоснованием существования колеблемости.
Основными задачами статистического изучения колеблемости производственных и социальных процессов являются следующие:
- измерение силы колебаний;
- изучение типа колебаний, разложение сложной колеблемости на разнородные составляющие;
- исследование изменений колеблемости во времени, динамики колебаний;
- изучение вариации колеблемости в пространственной или иной совокупности объектов;
- изучение факторов колеблемости и ее статистико-математическое моделирование.
Основными абсолютными показателями, характеризующими силу колебаний, являются:
1) амплитуда, или размах колебаний – это разность между алгебраическим наибольшим за период отклонением от тренда и наименьшим алгебраическим отклонением.
,
2) Среднее линейное отклонение (по модулю) рассчитывается по формуле:
,
где Еt – отклонения фактических уровней от тренда
N – число уровней,
3) Основным абсолютным показателем колеблемости считают среднее квадратическое отклонение. Если рассматриваемый период является выборкой, по которой делается оценка генеральной величины колеблемости в данном процессе для целей прогнозирования (экстраполяции), то оценку генерального среднего квадратического отклонения вычисляют по формуле:
, (3)
где Р – число параметров тренда, включая свободный член.
В число показателей колеблемости помимо абсолютных должны входить и относительные показатели, роль которых заключается в том, что лишь в них выражается сравнимая для различных рядов мера интенсивности колебательного процесса. Относительные показатели строятся как отношения абсолютных показателей к среднему уровню ряда динамики за тот же период. Так, на основе среднего квадратического отклонения можно вычислить относительный показатель – коэффициент колеблемости.
,
По отношению к урожайности на основе опыта массового измерения колебаний по разным культурам и территориям при колеблемость можно характеризовать как слабую; при как умеренную; при – как сильную; при – как очень сильную.
Система показателей колеблемости должна быть дополнена показателями устойчивости как свойства, противоположного колеблемости.
Коэффициентом устойчивости называют величину равную (5), или дополнение коэффициента колеблемости до единицы.
Существенной характеристикой колеблемости является тип колебаний. Первичных, или «чистых», колебаний в динамических рядах можно выделить три: «пилообразная», или «маятниковая», колеблемость, при которой знаки отклонений от тренда чередуются строго поочередно; долгопериодическая, или циклическая, при которой несколько уровней подряд отклоняются от тренда в одну сторону, а затем несколько уровней – в противоположную сторону и т.д.; случайно распределенная во времени, при которой равновероятна любая последовательность знаков и величины отклонений от тренда.
Ни один из этих типов, как
правило, не встречается на практике
в чистом виде, но обычно один из типов
является преобладающим для
Разные типы колеблемости объясняются, как правило, разними причинами. Так «пилообразная» колеблемость – автоколебательным причинным механизмом. Долгопериодическая колеблемость обычно связана с циклами внешних факторов: солнечная активность, смена времени года, гипотетические циклы метеорологических процессов. Случайную колеблемость обычно рассматривают как наложение или «интерференцию» многих разных по характеру и длине цикла колебательных процессов.
Для исследования типа колеблемости предложен ряд методов. Так, М.Дж. Кондэл предложил критерий «поворотных точек», или локальных экстремумов, в ряду отклонений от тренда. Им доказано, что при случайном распределении во времени колебаний число локальных экстремумов в среднем равно:
, (6).
при среднем квадратическом отклонении
При «пилообразной» колеблемости число «поворотных точек» будет точно равно N-2, а при долгопериодической – удвоенному числу циклов, уменьшающихся на длине периода N, поскольку каждый цикл содержит a экстремума. Измерив фактическое число «поворотных точек» и сравнив его с ожидаемым при различных типах колебаний можно определить преобладающий тип колеблемости.
Другой метод определения типа колеблемости, при котором учитывается не только порядок чередования величин отклонений от тренда, но и сами эти величины – автокорреляционный анализ. Он состоит в вычислении коэффициентов автокорреляции в ряду отклонений от тренда со сдвигом на 1,2,3 и т.д. Полученная серия коэффициентов автокорреляции образует так называемую «автокорреляционную функцию». Уже по коэффициенту автокорреляции первого порядка, то есть со сдвигом на один год можно достаточно надежно судить о преобладающем типе колебаний.
Коэффициент автокорреляции первого порядка вычисляется по формуле:
,
При «пилообразной» колеблемости все произведения в числителе коэффициента будут отрицательны и будет получена существенная величина коэффициента. Напротив, при долгопериодической колеблемости подавляющая часть произведений – в числителе, притом наибольшее при абсолютной величине будут положительны, и в результате коэффициент автокорреляции окажется существенно положительным. При случайно распределенной во времени колеблемости одинаково вероятно любое чередование знаков отклонений от тренда. Поэтому окажется примерно поровну положительных и отрицательных произведений, а коэффициент окажется несущественно отличным от нуля. Существенность отличия коэффициента автокорреляции проверяется по специальным таблицам.
2.3. Прогнозирование на основе динамических рядов
Одно из важнейших практических применений статистического изучения тенденций динамики и колеблемости состоит в прогнозировании на его основе возможных оценок величины изучаемого признака. Прогнозирование на основе измерения тренда и колеблемости один из методов статистического прогнозирования.
Статистический прогноз – это вероятностная оценка возможностей развития того или иного объекта (процесса) и величины его признаков в будущем, полученная на основе статистической закономерности, выявленной по данным прошлого периода. Он предназначен либо для планирования управления объекта, либо для выработки стратегии поведения субъекта, если объект не управляем.
Статистический прогноз предполагает не только верное качественное предсказание, но и достаточно точное количественное измерение вероятных возможностей ожидаемых значений признаков. Для данной цели необходимо, чтобы прогностическая модель имела достаточную точность или допустимо малую ошибку прогноза. Ошибка статистического прогноза будет тем меньше, чем меньше срок упреждения – временной промежуток от базы прогноза до прогнозируемого периода, и чем длиннее база прогноза – прошлый период, однородный по закономерностям развития, на основе информации за который построена прогностическая модель. Для определения срока упреждения используют чисто эмпирическое правило: в большинстве случаев срок упреждения не должен превышать третьей части длины базы прогноза.
Ошибка прогноза связана прямой зависимостью с колеблемостью. Поэтому сила колебаний должна учитываться при выборе соотношения между длиной базы прогноза и сроком упреждения. Чем сильнее колеблемость, тем большим должно быть это соотношение.
Область применения метода прогнозирования не основе тренда и колеблемости весьма широка, что вытекает из большого значения изучения трендов и колеблемости в социально-экономических науках, а так же в процессе практического планирования и управления производством. Одним из самых ярких примеров может служить прогнозирование урожайности на основе трендовой модели, а значит и объема продукции растениеводства, так как среди факторов, влияющих на урожайность, значительную роль играют метеорологические явления, которые в настоящее время наука не в состоянии прогнозировать даже на год в перед, а трендовая модель и измерение колеблемости позволяют рассчитывать вероятные границы прогнозируемой урожайности на несколько лет вперед.
Прогнозирование всегда опирается на опыт развития изучаемого явления в прошлом. Поэтому любой прогноз как выход за пределы изучаемого периода можно рассматривать как экстраполяцию.
Прогноз выражается как в виде точечной или интервальной оценке. Точечный прогноз есть оценка прогнозируемого показателя в точке (в конкретном году, месяце, дне, середине периода прогноза) по уравнению, описывающему тенденцию показателя.
Точечная оценка рассчитывается путем подстановки номера года, на который рассчитывается прогноз, в уравнение тренда. Она является средней оценкой для прогнозируемого интервала времени. Так, точечный прогноз указывает ту величину урожайности, на которую в среднем выйдет объект на прогнозируемый год, если тенденция динамики урожайности сохранится. Эту величину можно использовать в планирование.