Автор работы: Пользователь скрыл имя, 17 Июня 2014 в 09:18, курсовая работа
Термин «антибиотик» был предложен в 1942 г. С.А. Ваксманом для обозначения веществ, образуемых микроорганизмами и обладающих антимикробным действием.
Впоследствии многие исследователи предлагали свои формулировки, вкладывая в них подчас слишком ограниченное содержание либо чрезмерно расширяя это понятие.
Наиболее удачным с теоретической точки зрения и отражающим современное состояние вопроса является определение, предложенное М.М. Шемякиным, А.С. Хохловым и др. (1961): «Антибиотическими веществами (антибиотиками) следует называть все продукты обмена любых организмов, способные избирательно подавлять или убивать микроорганизмы (бактерии, грибы, вирусы и др.)».
Введение
1. Основные виды сырья, используемые в производстве антибиотиков
2. Аппаратурно-технологическое оформление процесса ферментации антибиотиков
. Стерилизации воздуха, аппаратов и сред, подготовка аппаратов к загрузке
. Процессы химической очистки антибиотиков и их аппаратурно-технологическое оформление
5. Процессы сушки в производстве антибиотиков
. Частная технология антибиотиков
. Лекарственные формы антибиотиков
. Дозировка, фасовка, упаковка и оформление готовой продукции
. Биологические методы контроля производства антибиотиков
Вывод
Список литературы
Температура в период первой фазы должны быть 30°С,. во вторую фазу 20 °С, рН в период роста гриба - ниже 7,0, потребление углеводов должно быть медленным, что достигается использованием лактозы, либо дробным внесением глюкозы.
Синтез того или иного пенициллина зависит от наличия специфичного вещества в среде, иначе говоря, предшественника, который микроорганизм включает в молекулу антибиотика без предварительного расщепления. Следует отметить, что предшественники биосинтеза пенициллина (фенилуксусная кислота, фенилацетамид, феноксиуксусная кислота) при определённых концентрациях и рН среды оказывают токсическое влияние на продуцента.
Фенилуксусная кислота наименее токсична. Добавление её в среду в концентрации выше 500 мкг/мл угнетает рост мицелия, особенно в первые 24 ч его развития.
Фенилуксусная кислота добавляется в концентрации от 100 до 500 мкг/мл через 24 ч развития Р. chrysogenum. При таких условиях обеспечивается наибольший выход бензилпенициллина, который через 72 ч развития может достигать 500-1000 мкг/мл. [9]
При развитии гриба без внесения предшественника образуется около 45% бензилпенициллина и около 53% пенициллина К (радикал - n-гептилпенициллин).
При добавлении к среде фенилуксусной кислоты (C6H5CH2COOH) меняется соотношение образующихся компонентов в сторону резкого увеличения бензилпенициллина, количество которого в зависимости от возраста достигает 75-99% от смеси пенициллинов.
В процессе культивирования Р. chrysogenum в среде, не содержащей фенилуксусной кислоты, в ней накапливаются серосодержащие соединения не ? - лактамного характера, близкие к цистеину и метионину. Добавление в среду фенилуксусной кислоты способствует более интенсивному метаболизму серосодержащих компонентов в соединения ? - лактамного характера.
При развитии продуцента пенициллинов - гриба Р. chrysogenum - на кукурузно-лактозной среде выделяют три фазы.
Первая фаза - рост мицелия, выход антибиотика низок. Всегда присутствующая в кукурузном экстракте молочная кислота потребляется продуцентом с максимальной скоростью, лактоза используется медленно. Потребление кислорода высокое. Усиливается азотный обмен, в результате в среде появляется аммиак и резко поднимается значение рН.
Вторая фаза - максимальное образование пенициллина, это связано с быстрым потреблением лактозы и аммонийного азота. рH среды остаётся почти без изменений, увеличение массы мицелия незначительное, потребление кислорода снижается.
Третья фаза - снижение концентрации антибиотика в среде в связи с начавшимся автолизом мицелия и выделением в результате этого процесса аммиака, что сопровождается повышением рН среды.
Процесс биосинтеза пенициллина ведётся при самом тщательном соблюдении стерильности всех операций, так как загрязнение культур посторонней микрофлорой резко снижает накопление антибиотика. Это связало с тем, что многие бактерии воздуха способны образовывать пенициллиназу. Особенно активно продуцируют этот фермент B. subtilis и В. cereus.
Одним из активных продуцентов пенициллиназы является туберкулёзная палочка (Мусоb. tuberculosis). Предположительно именно с этим свойством связана резистентность этого микроорганизма к пенициллину.
Механизм биосинтеза молекулы пенициллина представлен на схеме:
Кетоглутарат + Ацетил-КоА
?
Гомоцитрат
?
?-кетоадипиновая кислота
??- аминоадипиновая кислота (L-?-ААК)
?? L-цистеин
L-?-ААК- L -цистеин (LL-дипептид)
?? L-валин
L-?-ААК-L-цистеин-D-валин (LLD-трипептид)
?
Моноциклический ?-лактам
?
Изопенициллин N (L-?-ААК-6-АПК)
?C6H5CH2COOH
Бензилпенициллин (C6H5CH2CO-6-АПК)
Современная промышленная микробиология получает культуральные жидкости, содержащие свыше 55 тыс. ед/мл. Выделение пенициллина начинается с фильтрации или центрифугирования (отделения мицелия гриба).
Из культуральной жидкости антибиотик, где он находится в виде кислоты, выделяют путём экстракции неполярными органическими растворителями (амилацетатом, хлороформом, бутилацетатом, бутанолом и др.).
Очистку антибиотика проводят путем замены растворителей, поскольку соли пенициллина плохо растворимы в органических растворителях.
Экстрагированный пенициллин в виде кислоты переводят в водный раствор в виде соли, добавляя щёлочь. Повторяя эти операции, пенициллин концентрируют и очищают. Большинство пенициллинов производят в виде натриевых или калиевых солей. Новокаиновые и бензатиновые соли являются основой пролонгированных препаратов пенициллина для внутримышечного введения.
Большинство пенициллинов производят в виде натриевых и калиевых солей. Новокаиновые и бензокаиновые соли являются пролонгированными формами для внутримышечного введения.
В сухой кристаллической форме пенициллиновые соли достаточно стабильны при температуре 4 °С. Растворы быстро теряют активность (в течение 24 ч при температуре 20 °С), их готовят непосредственно перед введением.
Пероральные пенициллины применяют за 1 ч до или через 2 ч после приема пищи, чтобы снизить связывание компонентами пищи и кислотную инактивацию препаратов
Цефалоспорин - антибиотик из грибов рода Cepholosporium. Основным продуцентом является С. acremonium.
Впервые сообщение было сделано Джузеппе Бротцу в 1948 г. В культуральной жидкости было обнаружено несколько цефалоспоринов, основной из которых - цефалоспорин С.
На основе этого антибиотика в дальнейшем были созданы многочисленные полусинтетические цефалоспорины с ценными свойствами.
По химическому строению цефалоспорин принадлежит ? -лактамным соединениям, но ?-лактамное кольцо конденсировано не с пяти, а с шестичленным гетероциклом.
Цефалоспорины в отличие от пенициллинов устойчивы к ?-лактамазе, подавляют развитие и грамположительных и грамотрицательных бактерий, но активность этого антибиотика ниже пенициллина.
Цефалоспорин не инактивируется пенициллиназой. Но имеется аналогичный фермент, гидролизующий ?-лактамное кольцо цефалоспорина - цефалоспориназа.
В процессе развития С. acremonium наряду с цефалоспорином С синтезируется и пенициллин N. Его образование идёт тем же путём, что и образование изопенициллина N в процессе биосинтеза бензилпенициллина. Через ряд стадий из изопенициллина N образуется цефалоспорин С.
В последние годы методом смешанного (биологического и химического) синтеза удалось получить около 50 тыс. аналогов цефалоспорина.
Примерно 50 антибиотиков имеет практическое клиническое значение. Цефалоспорины традиционно делят на четыре поколения по спектру действия и антимикробной активности. [8]
Таблица 1. Характеристика цефлоспоринов различных поколений
ПоколениеПрепараты
Спектр активности IЦефадроксил, цефазолин,
цефалексин. цефалотин, цефапирин, цефрадинСтафилококки,
стрептококки, пневмококки, энтеробактерииII
Цефаклор, Цефамандол, Цефоницид, Цеокситин,
Цефметазол, цефотетан, цефуроксим, цефпрозил,
лоракарбеф, цефподоксим Грамотрицательные
бактерии, устойчивые к действию ?-лактамаз
IIIЦефаперазон, цефотаксим, цефазидим,
цефтизоксим, цефтриаксон, цефиксим, максалактам
Энтеробактерии, в т.ч. устойчивые к другим
антибиотикам. Устойчивы к действию ?-лактамаз,
образуемых грамотрицательным бактериями
IV Цефипин Низкое сродство к ?-лактамазам,
быстро проникает в периплазматическое_
Стрептомицин принадлежит к группе аминогликозидных антибиотиков.
Актиномицет, синтезирующий Streptomyces griseus впервые был выделен в лаборатории микробиологии Ратжерского университета в 1943 г. С появлением стрептомицина медицина получила мощное оружие для борьбы с таким тяжёлым и достаточно щироко распространённым заболеванием, как туберкулёз. Поэтому детально разрабатывались вопросы применения стрептомицина в терапии различных инфекционных заболеваний и его промышленного производства.
Стрептомицин продуцируют ряд видов актиномицетов рода Streptomyces. Однако основным продуцентом стрептомицина признан S. griseus, способный синтезировать до 10-20 тыс. мкг/мл антибиотика. Культуры актиномицетов весьма вариабельны и каждому штамму должна соответствовать определённая среда и свой режим для развития микроорганизма. На их изменчивость влияют условия культивирования и особенно состав сред (на более богатых по составу средах наблюдается и более быстрая изменчивость).
Изменчивость продуцентов стрептомицина - результат генетической нестабильности этих микроорганизмов, обусловленный существенными перестройками ДНК, которые затрагивают многие гены, в том числе и гены биосинтеза антибиотиков и гены устойчивости к ним.
Для стабилизации признаков, связанных с антибиотикообразованием, при хранении и поддержании штамма иногда в среды добавляют антимутагены - вещества, способные стабилизировать процессы, приводящие к хромосомным перестройкам и регуляции экспрессии генов. Среди антимутагенов - пуриновые нуклеотиды, ионы марганца, L-метионин, гистидин, полиамины, кофеин и другие соединения. В контроле биосинтеза стрептомицина S. griseus принимает участие плазмидная ДНК, в процессе биосинтеза - 20-30 генов. [9]
При промышленном производстве стрептомицина используются штаммы, хорошо развивающиеся на соевых средах, их основными компонентами является соевая мука, гидрол, аммонийные соли. Существенную роль в биосинтезе стрептомицина играют жиры соевой муки и её минеральный состав. Белок сои и его кислотный гидролизат малопригодны для биосинтеза антибиотика.
Аэрация среды имеет существенное значение, так как S. griseus - высокоаэробный организм и поглощает значительное количество кислорода, которое зависит от состава среды и стадии развития продуцента.
В ранний период развития актиномицета потребление кислорода воздуха более интенсивное, а затем оно падает до нуля. Увеличение степени аэрации повышает выход стрептомицина.
В анаэробных условиях продуцент стрептомицина развивается слабо. Мицелий, выращенный в аэробных условиях и перенесённый затем в анаэробные, стрептомицина не образует. Для максимального накопления антибиотика культура должна находиться в условиях непрерывной аэрации.
Оптимальная температура для развития антибиотика 27-29 °С. Повышение её до 30 ºС и выше резко снижает и даже прекращает его образование. Оптимальную температуру меняют в зависимости от штамма продуцента и состава среды.
Лучшим начальным рН для развития актиномицета является 7,0. Стрептомицин образуется при значении рН от 7,5 до 8,5.
В кислых средах активность стрептомицина снижается, в щелочных - максимальная. Так, активность стрептомицина при рН 5,8 в 20-80 раз меньше, чем при рН 8,0. Для проявления максимальной антимикробной активности стрептомицина оптимальное значение рН 7,5-8,0.
Наличие некоторых веществ в среде влияет на антибиотическую активность стрептомицина. Если к этой среде прибавить 0,5-3% натрия хлорида, калия хлорида или натрия сульфата, Е. coli развивается в присутствии 10 мкг/мл стрептомицина.
Имеется два объяснения этому факту: в присутствии натрия хлорида уменьшается скорость и степень диффузии стрептомицина, или натрия хлорид снижает адсорбцию антибиотика бактериальной клеткой.
При концентрации пировиноградной, фумаровой кислот до 1% продуцент развивается в присутствии 10 мкг/мл стрептомицина, если концентрацию солей повысить до 3%, рост бактерий наблюдается при концентрации антибиотика 150 мкг/мл.
Защитные свойства этих кислот по-разному проявляются по отношению к различным микроорганизмам. В отношении Е. coli защитные свойства проявляются в большей степени, в отношении Staph. aureus защитных свойств не наблюдается.
Сильно снижается активность стрептомицина в присутствии цистеина и гидроксиламина (цистеин полностью инактивирует антибиотик в течение нескольких часов).
При развитии продуцента различают две основные стадии. На первой стадии идёт быстрый рост и развитие микроорганизма с энергичным использованием основных компонентов субстрата, максимальное потребление кислорода.
В цитоплазме высокое содержание РНК, ДНК вначале отсутствует и обнаруживается только через 12 ч развития. В среде происходит некоторое увеличение аммонийного азота, связанное с разложением белков соевой муки. рН вначале несколько снижается, затем повышается с 6,8 до 7,9. Образование стрептомицина незначительное.
Через 28 ч масса мицелия прекращает увеличиваться, начинается вторая стадия - процесс образования стрептомицина. На третьи сутки рН с 7,9 падает до 6,7, а на четвёртые и пятые - вновь возрастает до 7,7.
Вторая стадия характеризуется медленным потреблением оставшихся в среде питательных веществ, замедлением роста актиномицета, снижением потребления кислорода, автолизом мицелия, максимальным образованием стрептомицина.
Максимальное накопление стрептомицина наблюдается, когда автолитические процессы начинают преобладать над процессами роста. Количество аммонийного азота продолжает возрастать, что, по всей вероятности, связано с разложением белков соевой муки и автолизом мицелия. В культуральной жидкости находятся минеральные вещества, белки, нуклеиновые кислоты, аминокислоты, полисахариды, жиры, стрептомицин и другие вещества.
S. griseus при определённых условиях развития культуры образует ещё один антибиотик - маннозидострептомицин (стрептомицин В), в чистом виде вьщеленный в 1947г. из культуры актиномицета методом противоточной хроматографии.
Маннозидострептомицин отличается от стрептомицина наличием в молекуле маннозы. Он менее активен, чем стрептомицин. Культуры S. griseus содержат фермент, превращающий маннозидострептомицин в стрептомицин. При соответствующем контроле развития культуры актиномицета можно добиться минимального образования маннозидострептомицина.
Основная часть стрептомицина выделяется в культуральную среду, но часть его остаётся в мицелии и на его поверхности. С целью извлечения стрептомицина из микроорганизма культуральную жидкость вместе с биомассой обрабатывают минеральной кислотой. При этом весь антибиотик переходит в раствор.
Мицелий отделяют прессованием или центрифугированием. Свободную от мицелия культуральную жидкость обрабатывают щавелевой кислотой. Этим достигается удаление белков и органических оснований, ионов металлов (кальция, магния, железа), далее ведётся выделение стрелтомицина в чистом виде.