Автор работы: Пользователь скрыл имя, 31 Марта 2014 в 22:19, шпаргалка
Центральную нервную систему образуют головной и спинной мозг. Отделами головного мозга являются: продолговатый мозг, мозжечок, средний мозг, таламус, подкорковые базальные ганглии и кора головного мозга. Периферическую нервную систему образуют черепно-мозговые и спинномозговые нервы (вегетативные и соматические). Мозг состоит из клеток нескольких типов: преимущественно из нейронов и глиальных клеток. При этом каждый нейрон может иметь синаптические связи с несколькими сотнями, даже тысячами других нейронов. В каждый данный момент нейрон в зависимости от интеграций тормозных и возбуждающих стимулов может либо генерировать импульсы, либо нет.
7. Посттетаническая потенциация. Это свойство нервных центров предполагает повышение возбудимости центра, сопровождающееся значительным увеличением амплитуды синаптических потенциалов, после поступления частых импульсов (более 400-500 имп/с). Величина и продолжительность посттетанической потенциации находится в зависимости от длительности и частоты ритмической стимуляции. После очень продолжительной стимуляции уровень посттетанической потенциации может возрасти во много раз, а ее продолжительность может составлять от нескольких минут до нескольких часов (рис. 3.6.). Посттетаническая потенциация относится к процессам облегчения в ЦНС и имеет отношение к обучению и памяти. Таким образом, если предварительно раздражать центр частыми импульсами, то при передачи на центр под подпорогового стимула, можно получить эффект, который главным образом объясним накоплением ионов Са в пресинаптическом окончании. Ионы Са поступают туда во время потенциала действия, но выйти оттуда не успевают. В результате в синаптическую щель выделяется значительное количество медиаторов.
8. Конвергенция – это свойство нервных центров заключается в том, что импульсы, приходящие в ЦНС по различным эфферентным волокнам, могут адресовываться (конвергировать) к меньшему количеству промежуточных и афферентных нейронов. Это явление легло в основу принципа конвергенции, установленного Шеррингтоном.
9. Дивергенция – это свойство противоположно конвергенции. Возбуждение в ЦНС может распространяться от одного нейрона на несколько (биологический усилитель).
10. Рефлекторный тонус нервных центров - это постоянное возбуждение нервных центров в состоянии покоя, без нанесения дополнительных раздражений. Тонус нервных центров поддерживается нервными импульсами, непрерывно поступающими от рецепторов (особенно проприорецепторов) и различными гуморальными влияниями (гормоны, СО2 и др.).
11. Быстрое утомление нервных центров. В отличие от нервных волокон нервные центры легко утомляемы. Утомление нервного центра проявляется постепенным снижением, а затем и полным прекращением рефлекторного ответа.
12. Высокая чувствительность недостатку кислорода и действию ядов. Нервные центры очень чувствительны к недостатку кислорода и действию ядов.
13. Центральное возбуждение. В нервных центрах при действии раздражителей имеет место центральное возбуждение, распространяющееся [иррадиирующее] на другие центры. Иррадиация может носить избирательный характер, когда возбуждение распространяется целенаправленно - в строго определенном направлении и диффузный - возбуждение распространяется равномерно, на все участки. Состояние диффузной иррадиации возбуждения нервных центров свойственно новорожденным и детям первых месяцев жизни, т. к. нейроны и нервные волокна еще недостаточно сформировались, например, полностью не миелинизировались.
14. Центральное торможение было открыто в 1862 г. И. М. Сеченовым. В нервных центрах при действии раздражителей наблюдается центральное торможение, которое проявляется подавлением функциональной активности какого-либо органа или системы. Доказательством наличия в ЦНС торможения явились классические опыты И. М. Сеченова: у лягушки перерезался головной мозг на уровне зрительных бугров, и на место среза помещался кристаллик поваренной соли. При погружении задней лапки лягушки в слабый раствор серной кислоты обнаружено, что время рефлекса удлиняется. После же удаления раздражителя (кристаллика соли) время рефлекса восстанавливалось. Результаты опытов позволили ученому заключить, что в стволе мозга находятся тормозные структуры, угнетающие спинномозговые рефлексы. Как выяснилось много лет спустя, эти тормозные структуры входят в состав ретикулярной формации. Вскоре после работ Сеченова были выявлены новые факты, свидетельствующие о центральном торможении. Так, Гольц показал, что кислотный рефлекс у лягушки, заключающийся в сокращении мышц лапки в ответ на ее погружение в слабый раствор кислоты, может быть заторможен одновременно сжатием пинцетом другой лапки.
Торможение (как и возбуждение) относится к активному процессу. В настоящее время принято выделять две формы торможения: первичное и вторичное. Для возникновения первичного торможения необходимо наличие специальных тормозных структур.
Для возникновения вторичного торможения не требуется специальных тормозных структур. Оно развивается вследствие особых состояний, возникающих в ЦНС, в результате изменения функциональной активности обычных возбудимых нейронов.
Примерами первичного торможения могут быть пресинаптическое торможение и торможение, связанное с гиперполяризацией (ТПСП), развивающейся на постсинаптической мембране под влиянием тормозных медиаторов. Возникновение состояния гиперполяризации на постсинаптической мембране блокирует проведение возбуждения.
Позже было открыто пресинаптическое торможение. Оно развивается в аксо-аксональных синапсах, образованных на пресинаптических структурах нейрона (рис. 3.7.). Как было показано, в ЦНС есть клетки, отростки которых расположены на пресинаптических окончаниях нервных утолщений других клеток. Клетка, которая образует такие контакты на пресинаптических структурах, выделяет какое-то вещество (какое - до сих пор конкретно не установлено), блокирующее проведение импульсов.
В основе пресинаптического торможения лежит развитие медленной и длительной деполяризации мембраны аксона в месте контакта его с аксоном другого нейрона, что ведет к нарушениям функции транспортных систем, к снижению проницаемости мембран для ионов натрия по типу катодической депрессии Вериго, связанных с натриевой инактивацией. По этому возбуждение в виде импульсов, приходящее к этому участку, благодаря стойкой деполяризации, уменьшается или вовсе блокируется. В настоящее время полагают, что пресинаптическое торможение, создает охранительный режим для нервных клеток, в результате чего нейроны предохраняются от истощения или перевозбуждения. Данный тип торможения создан природой специально для нервных клеток, как более ранимых образований. Вторичное торможение, не требующее специальных структур, может быть пессимальным и парабиотическим. В основе пессимального торможения лежит пессимум Введенского. Оно наблюдается в том случае, когда частота поступающих импульсов будет превышать лабильность ткани. В этом случае часть импульсов попадает в период рефрактерности и не проявляет своего действия.
Парабиотическое торможение также является разновидностью вторичного размножения. Парабиоз развивается тогда, когда под влиянием различных вредных факторов снижается лабильность. В результате этого обычные по частоте раздражители не воспринимаются нейронами. Пессимальное и парабиотическое торможения неразрывно связаны между собой, практически их природа одна и та же.
В ЦНС имеет место еще одна форма торможения – индукционное торможение. Обязательным условием его возникновения в ЦНС является одновременное наличие в ЦНС двух очагов возбуждения, один из которых будет тормозиться другим. Так, если под влиянием какого-либо раздражителя возникает очаг возбуждения, но в ЦНС уже действует другой - более сильный и биологически более важный для организма – очаг возбуждения, то течение текущей физиологической реакции прекращается.
В связи с открытием постсинаптического торможения, ученый Реншоу в спинном мозге открыл целую тормозную систему, которая получила название тормозной системы Реншоу. Данная система связана с наличием в спинном мозге тормозных нейронов, т. е. нейронов, имеющих тормозные синапсы. Она обеспечивает в спинном мозге, так называемый, возвратный тип торможения, играющий очень важное значение в координации рефлекторных процессов. Допустим, что возбуждаются две обычные нервные клетки, между которыми находится тормозный нейрон, синаптически связанный с этими и с соседними нервными клетками. В этом случае при возбуждении обычных клеток информация передается на тормозный нейрон, который через тормозные синапсы угнетает деятельность соседних нейронов и нейрона, который возбуждается.
Тормозная система Реншоу предохраняет нервные клетки, от перевозбуждения и не дает возможности распространяться возбуждению в том направлении, где оно не желательно. Если выключить систему Реншоу путем введения животному стрихнина, то развивается стрихновый шок, проявляющийся судорогами, переходящими в параличи, т. к. возбуждение распространяется на многочисленные соседние мотонейроны.
Координация рефлекторных процессов
Под координацией рефлекторных процессов следует понимать взаимодействие между нервными центрами, принимающими участие в осуществлении сложного рефлекторного акта. Координационные процессы имеют место и в вегетативной сфере (например, функции внутренних органов). Однако, последнюю координацию визуально уловить невозможно. Более четко координация выражена в соматической сфере, которую можно видеть, когда, например, выступают гимнасты, плавают пловцы, бегают спринтеры и др. В основе координационных процессов лежат следующие основные принципы или механизмы:
1. Практически все свойства нервных центров: трансформация ритма, суммация, последствие, конвергенция, дивергенция, центральное торможение и возбуждение и др.
2. При осуществлении
любого рефлекторного акта
3. В координации
рефлекторных процессов
Однако, эта гипотеза устарела и для объяснения реципрокности используется теория австрийского ученого Экклса. Реципрокность обусловлена генетически. Удалось выяснить, что отростки расположенные в спинно-мозговых ганглиях, дают разветвления. Одни из них возбуждают мотонейроны, иннервирующие мышцы-сгибатели, другие – мышцы-разгибатели. Генетически обусловлено, что при возбуждении центра мышц-сгибателей одновременно тормозится центр разгибателей через тормозные вставочные клетки и наоборот. Такие взаимоотношения хорошо выявляются у спинальных животных. Такая генетическая структура нервной системы спинного мозга позволяет объяснить реципрокность отношения между центрами сгибателей и разгибателей мышц, которые лежат в основе координационной деятельности ЦНС.
4. Механизм обратной
связи. В основе механизма обратной
связи лежат вторичные
Имеются и специфические нервные окончания, расположенные мышечной системе. Это аппарат Гольджи и проприорецепторы, которые принимают участие в формировании мышечно-суставного чувства. Благодаря последнему, мы ощущаем положение тела в пространстве. За счет вторичных афферентных импульсов, проходящих по вторичным путям, контролируется точность и соразмерность совершаемых движений.
Если в эксперименте у животного перерезать задние корешки и прекратить доступ вторичных импульсов к центрам, то несмотря на целостность передних корешков, движения становятся бесконтрольными и не координированными, а часто не проявляются вовсе, пока не включится зрительный анализатор.
Вторичные афферентные импульсы обуславливают цепные двигательные рефлексы, в которых за одним этапом обязательно следует другой. Причем первый возникает вследствие раздражения экстеро- или интерорецепторов, в то время как второй - за счет проприорицепторов мышц, обязательно участвующих в осуществлении данного рефлекторного акта.
Таким образом, вторичные афферентные импульсы также обуславливают ритмические рефлексы, т. е. последовательное чередование одних и тех же двигательных актов. Например, при ходьбе.
5. Принцип общего
поля (принцип “воронки”). Проявляется
во взаимоотношении между