Автор работы: Пользователь скрыл имя, 18 Декабря 2013 в 23:21, курсовая работа
Управление – это прежде всего процесс принятия определённых решений. Но в основе принятия почти всякого решения лежит обозначенный самим человеком круг альтернатив. В свою очередь, формирование и выбор конкретной альтернативы производится на основе имеющейся информации. Следовательно, информация – основа управленческой деятельности, незыблемый фундамент, без которого практически всякая осмысленная человеческая деятельность, в том числе и управленческая, становится неэффективной и хаотической. Именно в связи с исключительной важностью информации, в данной курсовой работе значительное внимание будет уделено структуре информации, её классификации и другим не менее важным вопросам.
Информационные единицы способны объединяться в потоки. Потоки информации, циркулирующие в системах управления, непрерывно возрастают.
управления и управление данными в значительной степени действуют незаметно и варьируются от относительно простой типовой модели в электронной таблице до сложной комплексной модели планирования, основанной на математическом программировании. Чрезвычайно популярный тип DSS - в виде генератора финансового отчета. С помощью электронной таблицы типа Lotus 1-2-3 или Microsoft Excel создаются модели, чтобы прогнозировать различные элементы организации или финансового состояния. В качестве данных используются предыдущие финансовые отчеты организации. Начальная модель включает различные предположения относительно будущих трендов в категориях расхода и дохода. После рассмотрения результатов базовой модели менеджер проводит ряд исследований типа "что, если", изменяя одно или большее количество предположений, чтобы определить их влияние на исходное состояние. Например, менеджер мог бы зондировать влияние на рентабельность, если бы продажа нового изделия росла на 10% ежегодно, Или менеджер мог бы исследовать влияние большего, чем ожидаемое, увеличения цены сырья, например 7% вместо 4% ежегодно. Этот тип генератора финансового отчета- простые, но мощные DSS для руководства принятием финансовых решений. Пример DSS по приведению транзакций данных - система определения размеров ассигнований на полицейские выезды, используемая городами Калифорнии. Эта система позволяет офицеру полиции увидеть карту и выводит данные географической зоны, показывает полиции звонки вызовов, типы вызовов и время вызовов. Интерактивная способность графики системы разрешает офицеру манипулировать картой, зоной и данными, чтобы быстро и легко предположить вариации альтернатив полицейских выездов. Другой пример DSS - интерактивная система для планирования объема и производства в большой бумажной компании. Эта система использует детальные предыдущие данные, прогнозирующие и планирующие модели, чтобы проиграть на компьютере общие показатели компании при различных плановых предположениях. Большинство нефтяных компаний развивают DSS, чтобы поддержать принятие решения капиталовложений. Эта система включает различные финансовые условия и модели для создания будущих планов, которые могут быть представлены в табличной или графической форме[2].
Все приведенные примеры DSS названы специфическими DSS. Они - фактические приложения, которые помогают в процессе принятия решения. Напротив, генератор системы поддержки принятия решений - это система, которая обеспечивает набор возможностей быстро и легко строить специфические DSS. Генератор DSS - пакет программ, разработанный для выполнения на частично компьютерной основе. В нашем примере финансового отчета Microsoft Excel или Lotus 1-2-3 могут рассматриваться как генераторы DSS, в то время как модели для проектирования финансовых отчетов для частного отделения компании на базе Excel или Lotus 1-2-3 - это специфические DSS [2].
Исполнительные информационные системы (Executive Support System)
Исполнительные информационные системы (Executive Support System - ESS) появились в 80-х годах. Ключевая концепция исполнительной информационной системы состоит в том, что такая система поставляет интерактивную совокупность текущей информации относительно конъюнктуры рынка, формирует легкий доступ для старших руководителей и других менеджеров без помощи посредников, ESS использует современную графику, связь и методы хранения данных, обеспечивая исполнителям легкий интерактивный доступ к текущей информации относительно состояния организации. Первоначально большинство ESS создавалось только для самих высших руководителей в фирме, но сейчас круг пользователей в большинстве компаний расширен, чтобы охватить все уровни управления. ESS использует данные, которые были отфильтрованы и обличены в итоге в форму, полезную для руководителей организации. Кроме того, много эффективных ESS включают качественные данные типа информации о конкурентоспособности, оценки и прогнозы. Например, Comshare's Commander Decision является клиент-сервером и программой на базе intranet (локальная сеть, взаимодействующая с Internet), способствует быстрому широкому применению ориентированных на покупателей приложений типа поддержки принятия решения, таких, как анализ выполнения, исполнительные информационные системы и управление сообщениями. Commander Decision допускает, чтобы деловые пользователи получали информацию в любом виде, включая карты, диаграммы, вставки, запросы, вычисления и даже персональные напоминания об условиях предусмотренных встреч. Этот универсальный инструмент может использоваться, чтобы строить традиционные ESS-приложения для исполнителей, как описано выше, или систем поддержки принятия решений для менеджеров на различных уровнях бизнеса. Commander Decision предоставляет для продажи большое количество легких в использовании и просто интерпретируемых изображений для предоставления ключевой информации менеджерам. Кроме того, он обеспечивает выборочный контроль, интеллектуальную углубленную способность распознавать необходимую детальную информацию, демонстрацию десяти лучших или худших показателей, внимание к важным предметам новостей и странное определение тенденций, отношений и новые версии данных [2].
Возможно, самая ранняя ESS, описанная в печати, - управление информацией и поддержка принятия решения (MIDS) системы в Lockheed-Georgia Company. Спонсором для MIDS были президент Lockheed-Georgia и специальный штаб, сообщавший вице-президенту финансовое развитие системы, Для развития MIDS был использован эволюционный подход с ограниченным числом показов, разработанных первоначально для ограниченного числа руководителей. Например, дисплей мог показывать предполагаемым клиентам типы самолетов или графически описывать прогноз и фактическую продажу в течение прошлого года [2].
Начальная версия MIDS в 1979 г. имела только 31 дисплей. К 1985 г. было поставлено 710 дисплеев, система использовалась 30 старшими исполнителями и 40 работающими менеджерами. Успех MIDS зависел от многих особенностей, но, возможно, наиболее важным было то, что система выдавала ту информацию (основанную на количественных и качественных данных), в которой нуждались старшие руководители и их компании, чтобы достичь успеха.
В Великобритании фирма "Transco" использовала Commander Decision для создания ESS для 150 человек, от директора компании до финансовых аналитиков и менеджеров первого уровня. ESS включали информацию о расходах, данные о системах поставок и кредиторах. Пользователи имели свободный доступ к информации и могли углубляться вплоть до уровня детализации, в которой они нуждались; они могли также рассматривать многократные перспективы и ставить вопросы типа "что, если", "как изменится себестоимость, если наша критическая рабочая нагрузка повысится на 5 %?". "Commander Decision помогает нам принимать лучшие решения", - говорит Colin Jonson, менеджер District Operation, Transco.
Искусственный интеллект (Artificial Intelligence)
Идея искусственного интеллекта (AI),
т.е. изучение того, как компьютеры могут
"думать", имеет приблизительно
30-летний возраст, но только недавно
появились достаточно мощные компьютеры,
чтобы делать коммерчески привлекательными
AI-приложения. А1-исследования развились
в пять отдельных, но связанных областей:
естественные языки, робототехника, системы
ощущения (системы зрения и слуха),
экспертные системы и нейронные
сети. Чтобы работать с естественными
языками, необходимо создание систем,
которые переводят обычные
Заключительные две ветви AI наиболее пригодны для поддержки управления. Экспертные системы - это системы, которые используют логику принятия решения человеческого эксперта. Самая новая отрасль AI - нейронные сети, которые устроены по аналогии с тем, как работает человеческая нервная система, но фактически используют статистический анализ, чтобы распознать модели из большого количества информации посредством адаптивного изучения.
Экспертные системы (Expert Systems).
Как применяет логику эксперта компьютерная система? Чтобы спроектировать экспертную систему, специалист, называемый инженером знания (специально подготовленный системный аналитик), очень тесно работает с одним или большим количеством экспертов в изучаемой области. Инженеры знания пробуют узнавать все относительно способа, которым эксперт принимает решения. Если строится экспертная система для планирования оборудования, то инженер знания работает с опытными планировщиками оборудования, чтобы видеть, как они работают. Знание, полученное инженером знания, затем загружается в компьютерную систему, в специализированном формате, в блоке, названном базой знаний (рис. 3.3).
Эта база знаний содержит правила и заключения, которые используются в принятии решений, - параметры, или факты, необходимые для решения.
Другие главные фрагменты
Примеры экспертных систем.
Классический пример экспертной системы - MYCIN, она была создана в "Stanford University" в середине 70-х годов, чтобы диагностировать обращения по болезням крови и менингита. "General Electric" развивала экспертную систему CATS-1, чтобы диагностировать механические проблемы в дизельных локомотивах, фирма AT&T разработала АСЕ для обнаружения повреждений в телефонных кабелях. Международная нефтяная компания "Schlumberger" развивала экспертную систему, названную Dipmeter, применяемую для подачи сигналов, когда сверло заклинивает и когда сверление идет нормально. Эти примеры относятся к проблемам диагностики ситуаций и предписывают соответствующие действия, потому что эксперты не всегда присутствуют, когда возникают проблемы на производстве.
Некоторые экспертные системы специализируются в просеивании массивов наборов правил или других предписаний, иногда называемых основанными на случаях аргументации. "Human Service Agency" из Merced County (Калифорния) использует экспертную систему по имени Magic, которая включает 6000 правительственных постановлений в отношении благосостояния, продовольственных талонов, медицины, поощрения забот и т.д. Magic определяет, соответствует ли претендент пользе, и затем вычисляет тип и количество выгод. Полный процесс от заявления до заключительного решения теперь составляет примерно три дня, в то время как до этого он составлял три месяца. Кроме того, клерки, которые обрабатывают приложения, не требуют глубокого обучения, которое прежде требовалось. Все, что они должны уметь делать, это проводить претендента шаг за шагом через ряд вопросов, задаваемых компьютером.
Виртуальная реальность (Virtual Reality).
Виртуальная реальность (VR) предполагает использование машинных систем для создания окружающей среды, которая кажется реальной пользователю-человеку. Впечатляющий пример виртуальной реальности - игра Holodeck Enterprise, где каждый участник может стать Шерлоком Холмсом в реальной обстановке, с реальными характеристиками и где Кан-Люк Пикард может играть роль жестокого разбойника в начале X столетия.
Использование VR в не развлекательных
установках разделяется на две категории:
обучение и проектирование. Примеры
обучения будут приведены позже,
сопровождаясь примерами
Армия США использует виртуальную реальность для тренировки экипажей танков. Посредством больших экранов и звука солдаты как бы помещаются внутри танка, катящегося среди Иракской пустыни, и должны реагировать, как будто они были в реальном танковом сражении. В научно-исследовательской работе в Университете Северной Каролины виртуальная реальность использовалась в медицинских целях, например для представления объемной модели опухоли внутри тела пациента. После надевания специальных окуляров радиолог был способен добраться внутрь этой модели тела пациента и направить лучи так, чтобы они пересеклись в центре опухоли и не задели чувствительной к излучению ткани спинного мозга и пищевода. В близкой области виртуальная реальность используется для хирургического обучения. Новые врачи могут практиковать хирургические методы на виртуальных пациентах в виртуальной реальности хирургическим набором программ. Если врач сделает ошибку, то можно повторить операцию без опасности для пациента [2].
"Amoco" развила основанную на PC систему виртуальной реальности, названную "truck dri VR", для обучения водителей. Эта система, основанная на вариациях опасностей движения, стала удачным способом испытания для 12000 водителей. Система VR, создание которой стоит приблизительно 50000$, использует шлем с визуальной и слуховой информацией и полностью погружает пользователя в виртуальный мир. Вождение грузовика с driVR реалистично, с многократными возможностями для пользователя, включая перспективы и левых, и правых зеркал заднего вида, которые появляются тогда, когда пользователь поворачивает голову налево или направо.
Развитие виртуальной